RSA Assumption

For all PPT algorithms A, for all sufficiently large n,

$$\text{Prob}(A(N,e,x^e \mod N) = x) < \text{neg}(n)$$

(over n-bit $N=pq$, $\gcd(e, \phi(N)) = 1$, x in \mathbb{Z}_N^*)

RSA Assumption is true ONLY IF
Factoring Assumption is true

Average Hardness of Inverting RSA vs. Worst Case Hardness

Claim: Let $S=U_{n \in N}$, S_n, $S_n = \{(N,e) | N \in H_n, e \in \mathbb{Z}_{\phi(n)}\}$.
If \exists PPT B s.t. for all $(N,e) \in S_n$ for $n \Rightarrow \infty$,

$$\text{prob}_x(B(N,e,\text{RSA}_{N,e}(x)) = x) > \text{non-neg}(n)$$
then \exists PPT algorithm A to invert $\text{RSA}_{N,e}(x)$ $\forall x \forall (N,e) \in S$.

Proof: Given $y = x^e \mod N$, choose random r in \mathbb{Z}_N^* and map y to $z=y^r \mod N$. Now, run $B(z)$. If successful, i.e $B(z) = x^r \mod N$, output $x = B(z)/r \mod N$, else choose another r.
In expected $1/\varepsilon$ trials will be successful.

RSA and Factoring Integers

- **Fact 1:** Given N, e, p, and q, it's easy to compute $\phi(N)$ and $d=e^{-1} \mod \phi(N)$.
- **Fact 2:** Given only N, e, computing $\phi(N)$ is as hard as factoring N.
- **Fact 3:** Given only N, e, computing d is as hard as factoring N.

Conclusions:
- If can factor, can invert RSA
- But, is Inverting (breaking) RSA as hard as factoring? MAJOR OPEN PROBLEM
Trapdoor Function Equivalent to Factoring

[Rabin]

Let \(N = pq \), \(p, q \) primes and \(e = 2 \)!!

Define \(\text{Rabin}_N(x) = x^2 \mod N \)

\(\text{Rabin}_N(x) : Z_N^* \rightarrow \mathbb{QR}_N \) where \(\mathbb{QR}_N = \text{set of Squares mod } N \)

Observation:
- \(\text{Rabin}_N \) is not a permutation but a 4-1 function

Claims:
- square roots of \(x^2 \mod N \) are \(x, N-x, y, N-y \)
- If factorization of \(N \) is known, there exists a PPT algorithm for computing square roots mod \(N \)
- If only \(N \) is known, computing square roots mod \(N \) is provably as hard as factoring.

Chinese Remainder Theorem (CRT)

Let \(p_1 \ldots p_t \) s.t. \(\gcd(p_i, p_j) = 1 \)

and \(y_1 \ldots y_t \) be integers. Then there is a unique solution \(u \mod N = \prod p_i \) s.t.

\[
\begin{align*}
 u &\equiv y_1 \mod p_1 \\
 u &\equiv y_2 \mod p_2 \\
 \vdots \\
 u &\equiv y_t \mod p_t
\end{align*}
\]

and \(u \) can be easily computable.

Example CRT

\(p = 3, \ q = 7, \ N = 21, \ y_1 = 2, \ y_2 = 5 \) \(u = ? \)

Def: CRT coefficients of \(p \) are \(c \) and \(d \) s.t.

\[
\begin{align*}
 c &\equiv 1 \mod p \text{ and } 0 \mod q, \ e.g. \ c = 7, \text{ as } 7 \mod 3 = 1, 7 \mod 7 = 0 \\
 d &\equiv 1 \mod q \text{ and } 0 \mod p, \ e.g. \ d = 15, \text{ as } 15 \mod 3 = 0, \ 15 \mod 7 = 1
\end{align*}
\]

Given \(c \) and \(d \), compute \(u \) as follows

\[
 u = y_1 \cdot c + y_2 \cdot d = 2 \cdot 7 + 5 \cdot 15 = 89 \mod 21 = 5 \mod 21
\]
Computing Square Roots mod Composites As Hard As Factoring

Theorem:
If \(\exists \) PPT algorithm \(A \) s.t. \(A(N,x^2 \mod N)=x \), then \(\exists \) PPT algorithm to factor \(N \).

Proof: On input \(N \), choose a random \(r \) in \(\mathbb{Z}_N^* \).
Compute \(x=A(N,r^2 \mod N) \).
Now \(x^2 = r^2 \mod N \), and
\(x \neq +r \mod N \) (with prob 1/2).
\(x^2 = r^2 \mod N \rightarrow (x-r)(x+r) = 0 \mod N \)
either \(p|(x-r) \) or \(q|(x-r) \).
gcd\((x-r,N) = p \) or \(q \) \(\quad \text{QED} \)

Computing Square Roots mod Composites on Average As Hard As Factoring

Theorem: If \(\exists \) PPT algorithm \(A \) s.t. \(A(N,x^2 \mod N)=x \) with non-neg (n) probability, then \(\exists \) PPT algorithm to factor \(N \).

Proof: On input \(N \), choose a random \(r \) in \(\mathbb{Z}_N^* \).
Compute \(x=A(N,r^2 \mod N) \).
Now \(x^2 = r^2 \mod N \), and
\(x \neq +r \mod N \) (with prob 1/2).
\(x^2 = r^2 \mod N \rightarrow (x-r)(x+r) = 0 \mod N \)
So, gcd\((x-r,N) = p \) or \(q \) \(\quad \text{QED} \)

Computing Square Root mod \(N \), Given Factorization of \(N \)

Let \(N=pq \), and \(z=x^2 \mod N \).

\[\text{SQRT}_N(p,q,z) : \]
- Let \(z_1 = z \mod p \). Compute \(x_1 = \text{SQRT}_p(z_1) \)
- Let \(z_2 = z \mod q \). Compute \(x_2 = \text{SQRT}_q(z_2) \)
- Compute \(c_1 = 1 \mod p \) and \(0 \mod q \) (CRT)
- Compute \(c_2 = 1 \mod q \) and \(0 \mod p \) (CRT)
- Output \(x = x_1 c_1 + x_2 c_2 \)

Note: \((x_1 c_1 + x_2 c_2)^2 = z_1 \mod p \)
\((x_1 c_1 + x_2 c_2)^2 = z_2 \mod q \)
By CRT, there exists unique \(z \) s.t.
\(z = z_1 \mod p \) and \(z = z_1 \mod q \)

Rabin Collection of Trapdoor Functions

Define \(\text{Rabin} = \{ \text{Rabin}_N \mid \text{where } N=pq, p,q \text{ primes} \} \)

Theorem: Under Factoring-assumption,
Rabin is a collection of trapdoor functions.

Generation: Choose \(n \)-bit \(p,q \) and test
for primality. If primes set \(N=pq \), trapdoor\(_N = \{ p,q \} \)

Evaluation: Computing \(\text{Rabin}_N(x) \) takes \(O(n^2) \) time

Hard to Invert: by Factoring Assumption

Trapdoorness: Given \(N,p \) and \(q \) can compute square roots mod \(N \) in \(O(n^3) \).
Let $N=pq$, p,q primes s.t. $p=q=3 \mod 4$.
Define $BW_N: \mathbb{QR}_N \rightarrow \mathbb{QR}_N$
as $BW_N(x) = x^2 \mod N$

Claims:

- When $p=q=3 \mod 4$, then each square has a unique square root which itself is a square.
- BW_N is a permutation over the squares mod N.
- If factorization of N is known, there exists a PPT algorithm for inverting BW_N.
- If factorization is not known, computing square roots mod N is provably as hard as factoring N.