18.425/6.875 Introduction to Cryptography

Lecture #9, October 16, 1991

1 Introduction

In this lecture we introduce next bit tests and give examples of pseudo-random generators.

2 Next Bit Tests

Definition 1 A next bit test is a special kind of statistical test which takes as input a prefix of a sequence and outputs a prediction of the next bit.

Definition 2 A (discrete) probability distribution on a set S is a function $D : S \to [0, 1] \subseteq \mathbb{R}$ so that $\sum_{s \in S} D(s) = 1$. For brevity, probability distributions on $\{0, 1\}^k$ will be subscripted with a k. The notation $x \in X_n$ means that x is chosen so that $\forall z \in \{0, 1\}^n \Pr[x = z] = X_n(z)$. In what follows, U_n is the uniform distribution.

Recall the definition of a pseudo-random number generator:

Definition 3 A pseudo-random number generator (PSRG) is a polynomial time deterministic algorithm so that:

1. if $|x| = k$ then $|G(x)| = \hat{k}$
2. $\hat{k} > k$,
3. $G_{\hat{k}}$ is pseudo-random2, where $G_{\hat{k}}$ is the probability distribution induced by G on $\{0, 1\}^k$.

Definition 4 We say that a pseudo-random generator passes the next bit test A if for every polynomial Q there exists an integer k_0 such that for all $\hat{k} > k_0$ and $p < \hat{k}$

$$\Pr_{t \in G_{\hat{k}}} [A(t_1 t_2 \ldots t_p) = t_{p+1}] < \frac{1}{2} + \frac{1}{Q(k)}$$

Theorem 1 G passes all next bit tests \iff G passes all statistical tests.

1These notes were scribed by Alexander Russell.

2A pseudo-random distribution is one which is polynomial time indistinguishable from $U_{\hat{k}}$.

1
Claim 1. By analysis similar to that done in the previous lecture, $\Pr[A'(t_1 t_2 \ldots t_i) = t_{i+1}] > \frac{1}{2} + \frac{1}{kQ(k)}$.

Thus we reach a contradiction: A' is a next bit test that G fails, which contradicts our assumption that G passes all next bit tests.

3 Examples of Pseudo-Random Generators

Each of the one way functions we have discussed induces a pseudo-random generator. Listed below are these generators (including the Blum/Blum/Shub generator which will be discussed afterwards) and their associated costs. See [1, 2, 3].
One Way Function

<table>
<thead>
<tr>
<th>Name</th>
<th>One way function</th>
<th>Cost of computing one way function</th>
<th>Cost of computing (j)th bit of generator</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSA</td>
<td>(x^e \mod n, n = pq)</td>
<td>(k^3)</td>
<td>(jk^3)</td>
</tr>
<tr>
<td>Rabin</td>
<td>(x^e \mod n, n = pq)</td>
<td>(k^2)</td>
<td>(jk^2)</td>
</tr>
<tr>
<td>Blum/Micali</td>
<td>(\text{EXP}(p, g, x))</td>
<td>(k^3)</td>
<td>(jk^3)</td>
</tr>
<tr>
<td>Blum/Blum/Shub</td>
<td>(see below)</td>
<td>(k^2)</td>
<td>(\max(k^2 \log j, k^3))</td>
</tr>
</tbody>
</table>

3.1 **Blum/Blum/Shub Pseudo-Random Generator**

The Blum/Blum/Shub pseudo-random generator uses the (proposed) one way function \(g_n(x) = x^2 \mod n\) where \(n = pq\) for primes \(p\) and \(q\) so that \(p \equiv q \equiv 3 \mod 4\). In this case, the squaring endomorphism \(x \mapsto x^2\) on \(\mathbb{Z}_n^*\) restricts to an isomorphism on \((\mathbb{Z}_n^*)^2\), so \(g_n\) is a permutation on \((\mathbb{Z}_n^*)^2\). (Recall that every square has a unique square root which is itself a square.)

Claim 2 The least significant bit of \(x\) is a hard bit for the one way function \(g_n\).

The \(j\)th bit of the Blum/Blum/Shub generator may be computed in the following way:

\[
B(x^{2^j} \mod n) = B(x^\alpha \mod m)
\]

where \(\alpha \equiv 2^j \mod \phi(n)\). If the factors of \(n\) are known, then \(\phi(n) = (p-1)(q-1)\) may be computed so that \(\alpha\) may be computed prior to the exponentiation. \(\alpha = 2^j \mod \phi(n)\) may be computed in \(O(k^2 \log j)\) time and \(x^\alpha\) may be be computed in \(k^3\) time so that the computation of \(B(x^{2^j})\) takes \(O(\max(k^3, k^2 \log j))\) time.

An interesting feature of the Blum/Blum/Shub generator is that if the factorization of \(n\) is known, the \(2^\sqrt{n}\) bit can be generated in time polynomial in \(|n|\). The following question can be raised: let \(G_{BBS}^{BBS}(x, p, q) = B(f^{2^\sqrt{n}}(x)) \circ \ldots \circ B(f^{2^\sqrt{n}+2k}(x))\) for \(n = pq\) and \(|x| = k\). Let \(G_{BBS}^{2k}\) be the distribution induced by \(G_{BBS}^{BBS}\) on \(\{0,1\}^{2k}\).

Open Problem 1 Is this distribution \(G_{BBS}^{2k}\) pseudo-random? Namely, can you prove that

\[
\forall Q \in \mathbb{Q}[x], \forall PTM A, \exists k_0, \forall k > k_0 |Pr_{t \in \mathbb{G}_{BBS}^{2k}}[A(t) = 1] - Pr_{t \in \mathbb{U}_{2k}}[A(t) = 1]| < \frac{1}{Q(2k)}
\]

The previous proof that \(G\) is pseudo-random doesn’t work here because in this case the factorization of \(n\) is part of the seed so no contradiction will be reached concerning the difficulty of factoring.

More generally,

Open Problem 2 Pseudo-random generators, given seed \(x\), implicitly define an infinite string \(g_1^x g_2^x \ldots\). Find a pseudo-random generator so that the distribution created by restricting to any polynomially selected subset of bits of \(g^x\) is pseudo-random. By polynomially selected we mean examined by a polynomial time machine which can see \(g_i^x\) upon request for a polynomial number of \(i\)’s (the machine must write down the \(i\)’s, restricting \(|i|\) to be polynomial in \(|x|\)).

3
References

