Digital Modulation (Part I)

- Communication using symbols and bits
- Constellation diagrams and decision boundaries
- Transmit bandwidth vs. intersymbol interference
- Eye Diagrams and sample time sensitivity

Copyright © 2007 by M.H. Perrott
All rights reserved.
Review of Analog I/Q Modulation

- Consider modulating with both a cosine and sine wave and then adding the results
 - This is known as I/Q modulation
- The I/Q signals occupy the same frequency band, but one is real and one is imaginary
 - We can recover both of these signals

\[y(t) = i(t) + j q(t) \]

\[y(t) = 2 \cos(2\pi f_o t) + j 2 \sin(2\pi f_o t) \]

\[Y_i(j2\pi f) = I \]

\[Y_q(j2\pi f) = Q \]

\[I \text{ stands for in-phase component} \]

\[Q \text{ stands for quadrature component} \]
Review of Analog I/Q Demodulation

- Demodulate with *both* a cosine and sine wave
 - Both I and Q channels are recovered!
- I/Q modulation allows twice the amount of *information* to be sent compared to basic AM modulation with same *bandwidth*
Summary of Analog I/Q Demodulation

- **Frequency domain view**

 Baseband Input
 \[I_r(j2\pi f) \]
 \[Q_r(j2\pi f) \]
 \[i(t) \]
 \[q(t) \]

 Receiver Output
 \[I_r(j2\pi f) \]
 \[Q_r(j2\pi f) \]
 \[H(j2\pi f) \]
 \[2 \]
 \[2 \]

- **Time domain view**

 Baseband Input
 \[i(t) \]
 \[2\cos(2\pi f_0 t) \]
 \[2\sin(2\pi f_0 t) \]

 Receiver Output
 \[i_r(t) \]
 \[2 \]
 \[q_r(t) \]
Digital I/Q Modulation

- Leverage analog communication channel to send discrete-valued symbols
 - Example: send symbol from set \{-3,-1,1,3\} on both I and Q channels each symbol period
- At receiver, sample I/Q waveforms every symbol period
 - Associate each sampled I/Q value with symbols from set \{-3,-1,1,3\} on both I and Q channels
Advantages of going Digital

- Allows information to be “packetized”
 - Can compress information in time and efficiently send as packets through network
 - In contrast, analog modulation requires “circuit-switched” connections that are continuously available
 - Inefficient use of radio channel if there is “dead time” in information flow
- Allows error correction to be achieved
 - Less sensitivity to radio channel imperfections
- Enables compression of information
 - More efficient use of channel
- Supports a wide variety of information content
 - Voice, text and email messages, video can all be represented as digital bit streams
Constellation Diagrams

- **Plot I/Q samples on x-y axis**
 - Example: sampled I/Q value of \{1, -3\} forms a dot at \(x=1, y=-3\)
 - As more samples are plotted, constellation diagram eventually displays all possible symbol values

- **Constellation diagram provides a sense of how easy it is to distinguish between different symbols**

\[i(t) = 2\cos(2\pi f_o t) \]
\[q(t) = 2\sin(2\pi f_o t) \]

\[\text{Receiver Output} \quad H(j2\pi f) \quad \text{Lowpass} \]

\[i_r(t) \]
\[q_r(t) \]

6.082 Spring 2007
Digital Modulation (Part I), Slide 7
Assign each I/Q symbol to a set of digital bits

- Example: I/Q = \{1,3\} translates to bits of 1110
- Gray coding minimizes bit errors when symbol errors are made
 - Example: I/Q = \{1,1\} translates to bits of 1010
 - Only one bit change from I/Q = \{1,3\}
The Impact of Noise

- **Noise perturbs sampled I/Q values**
 - Constellation points no longer consist of single dots for each symbol
- **Issue:** what is the best way to match received I/Q samples with their corresponding symbols?
Symbol Selection Based on Slicing

- **Match I/Q samples to their corresponding symbols based on decision regions**
 - Choose decision regions to minimize symbol errors
 - Decision boundaries are also called slicing levels
Transitioning Between Symbols

- Transition behavior between symbols is influenced by both transmit I/Q input waveforms and receive filter
 - We will focus on impact of transition behavior at transmitter today
 - Ignore the impact of noise for this analysis
Influence of Transitions at Transmitter

- **Ideal analog communication channel** simply transports the transmitter I/Q signals to the receiver.
- **Constellation diagram** can be constructed at *transmitter* to evaluate its performance.
 - Bad constellation at transmitter implies bad one at receiver.
Transitions and the Transmitted Spectrum

- Want transmitted spectrum with minimal bandwidth
 - Wireless communication channels are a shared resource
- Issue: sharply changing I/Q waveforms lead to a wide bandwidth spectrum
Impact of Transmit Filter

- Transmit filter enables reduced bandwidth for transmitted spectrum
- Issue: can lead to *intersymbol interference (ISI)*
 - Constellation diagram displays vulnerability to making bit errors
Impact of Low Bandwidth Transmit Filter

- Lowering the transmit filter bandwidth leads to
 - Lower bandwidth transmitted spectrum
 - Increased ISI
- Eye diagrams allow ISI to be intuitively examined
Eye Diagrams

- Key idea: wrap signal back onto itself in periodic time intervals and retain all traces
 - Similar to action of oscilloscope
Looking at Many Symbols

- Increasing the number of symbols eventually reveals all possible symbol transition trajectories
 - Intuitively displays the impact of filtering on ISI
Assessing the Quality of an Eye Diagram

- Eye diagram allows visual inspection of the impact of sample time and decision boundary choices
 - Large *eye opening* implies less vulnerability to symbol errors
Relating Eye Diagrams to Constellation

- **Open eye diagrams lead to tight symbol groupings in constellation**
 - Assumes proper sample time placement
Impact of Low Transmit Bandwidth

- Eye diagrams intuitively show increased ISI
 - Also show sensitivity of bit errors to sample time placement
Summary

• Digital modulation operates by sending discrete-valued symbols through an analog communication channel
 - Receiver must sample I/Q signals at the appropriate time
 - Receiver matches I/Q sample values to corresponding symbols based on decision regions
 - Constellation diagrams are a convenient tool to see likelihood of bit errors being made

• Choice of transmit filter is a tradeoff between achieving a minimal bandwidth transmitted spectrum and minimal intersymbol interference (ISI)
 - Eye diagrams are a convenient tool to see effects of ISI and sensitivity of bit errors to sample time choice

• Next lecture: a closer look at the receiver...