Energy and Noise Revisited

- Constellation diagrams and SNR
- Bit error rate versus SNR
- Shannon Capacity Limit

Copyright © 2007 by M.H. Perrott
All rights reserved.
Review of Digital Modulation

- Transmitter sends discrete-valued signals over an analog communication channel
- Receiver samples recovered baseband signal
 - Noise and ISI corrupt received signal
- Key techniques
 - Properly design transmit and receive filters for low ISI
 - Sample and slice received signals to detect symbols
A Closer Look at the Transmitter

- Amplitude of I/Q transmit signals impact power of transmitted output
 - Output power is limited due to FCC regulations within a given spectral band
 - Low output power is desirable for portable applications to achieve long battery life
A Constellation View of Transmitter

- Provides intuitive view of relationship between symbol separation and transmitted power
A Constellation View of Receiver

- Provides an intuitive view of relationship between symbol separation, received signal power, and noise
Impact of SNR on Receiver Constellation

- **SNR influenced by transmitted power, distance between transmitter and receiver, and noise**
Impact of Increased Signal on Constellation

- Increase in received signal power leads to increased separation between symbols
 - SNR is improved if noise level unchanged
Quantifying the Impact of Noise

- **Minimum separation between symbols:** d_{min}
- **PDF of noise:** zero mean Gaussian PDF
 - Variance of noise sets the spread of the PDF
- **Bit errors:** occur when noise moves a symbol by a distance more than $d_{\text{min}}/2$
Impact of Reduced SNR

- Lower SNR leads to a reduced value for d_{min}
- Leads to a higher bit error rate
 - Assumes noise variance is unchanged
Impact of Symbol Reduction

- Reducing the number of symbols leads to an increased value for d_{min}
- Leads to a lower bit error rate
 - Assuming SNR remains constant
Can We Estimate Bit Error Rate?

- Bit Error Rate depends on:
 - SNR
 - Received signal power versus noise variance
 - Number of constellation points
 - Sets d_{min} at a given level of received signal power
Let's Start with a Detailed System View

- Assumptions: No ISI, 4-point constellation
A Closer Examination of Signal and Noise

Communication Channel

Baseband Input

\[I_{IN} \rightarrow i(t) \rightarrow i_r(t) \rightarrow i(t) \rightarrow I_{OUT} \]

\[Q_{IN} \rightarrow q(t) \rightarrow q_r(t) \rightarrow q(t) \rightarrow Q_{OUT} \]

Transmit & Receive Pair

\[i_r(t) \rightarrow d_{min} \rightarrow i_r(t) \]

\[q_r(t) \rightarrow d_{min} \rightarrow q_r(t) \]

Receiver Output

\[i_r(t) \rightarrow Q_{received} \rightarrow Q_{OUT} \]

\[q_r(t) \rightarrow Q_{received} \rightarrow Q_{OUT} \]

Sample & Slice

\[i_r(t) \rightarrow \text{Slicer} \rightarrow i_{OUT} \]

\[q_r(t) \rightarrow \text{Slicer} \rightarrow Q_{OUT} \]

Communication Channel for Q Channel

\[Q_{IN} \rightarrow d_{min}/2 \rightarrow Q_{received} \rightarrow Q_{OUT} \]

Decision Boundary

\[Q_{signal} = d_{min}/2 \]

PDF of Noise

\[f_X(x) = \sigma^2 \]

Variance
The Binary Symmetric Channel Model

- Provides a binary signaling model of channel
Computation of SNR

Communication Channel for Q Channel

[Diagram of Q channel with Q_{IN} and Q_{OUT} and decision boundary]

PDF of Received Q Sample

Transmitted 0

f_{Q0}(y)

Transmitted 1

f_{Q1}(x)

- \frac{d_{min}}{2}

0

\frac{d_{min}}{2}

Bit error

Signal Variance

= \left(\frac{d_{min}}{2} \right)^2

Noise Variance

= \sigma^2

\Rightarrow \quad SNR(dB) = 10 \log \left(\frac{(d_{min}/2)^2}{\sigma^2} \right)
Resulting Bit Error Rate Versus SNR

Communication Channel for Q Channel

PDF of Received Q Sample

Transmitted 0

Transmitted 1

Bit Error Rate versus SNR for Q Channel

Note:

- Bit Error Rate = P_e
- $SNR \ (dB) = \frac{10 \log \left(\frac{(d_{min}/2)^2}{\sigma^2} \right)}{10}$
- Gaussian PDF for noise
• In 1948, Claude Shannon proved that
 - Digital communication can achieve arbitrary low bit-error-rates if appropriate *coding* methods are employed
 - The capacity of a *Gaussian channel* with bandwidth BW to support arbitrary low bit-error-rate communication is:

 $$C = BW \log_2(1 + SNR) \text{ bits/second}$$
Impact of Channel Bandwidth on Capacity

- An increase in bandwidth by a factor of 2 allows twice the number of bits to be sent in time T
 - Capacity (bits/second) increases linearly with bandwidth

\[C = BW \log_2(1 + SNR) \text{ bits/second} \]
Impact of SNR on Capacity

\[C = BW \log_2(1 + SNR) \text{ bits/second} \]

- A high SNR allows more bits to be sent per symbol
 - Adding \(n \) bits requires adding \(2^n \) constellation points
 - Adding \(n \) bits therefore leads to \(d_{\text{min}} \) being reduced by a factor of \(2^n \)
 - Capacity increases logarithmically with SNR
Constellation Design (Symbol Packing)

- **Objective:** design constellation to maximize d_{min} while packing as many points in as possible
 - Maximizing d_{min} achieves lowest *uncoded* bit error rate
 - Maximizing number of constellation points achieves highest *uncoded* data rate (bits/second)
Summary

• Constellation diagrams allow intuitive approach of quantifying *uncoded* bit error rate of a channel
 - Function of SNR and number of constellation points

• A digital communication channel can be viewed in terms of a binary signaling model
 - Focuses attention on key issue of bit error rate

• Coding theoretically allows arbitrary low bit-error-rate performance of a practical digital communication link
 - We will dive more into this topic in the coming weeks....

• Next lecture: summary of Part I (Volt-by-volt)