Source Coding

- Information & Entropy
- Variable-length codes: Huffman’s algorithm
- Adaptive variable-length codes: LZW
Where we've gotten to...

With channel coding (along with block numbers and CRC), we have a way to reliably send bits across a channel:

Next step: think about recoding the message bitstream to send the information it contains in as few bits as possible.
Many message streams use a “natural” fixed-length encoding: 7-bit ASCII characters, 8-bit audio samples, 24-bit color pixels.

If we’re willing to use variable-length encodings (message symbols of differing lengths) we could assign short encodings to common symbols and longer encodings to other symbols… this should shorten the average length of a message.
Measuring information content

Suppose you’re faced with N equally probable choices, and I give you a fact that narrows it down to M choices. Claude Shannon offered the following formula for the information you’ve received.

\[\log_2\left(\frac{N}{M}\right) \text{ bits of information} \]

Examples:

- Information in one coin flip: \(\log_2(2/1) = 1 \) bit
- Roll of 2 dice: \(\log_2(36/1) = 5.2 \) bits
- Outcome of a Red Sox game: 1 bit
 (well, actually, are both outcomes equally probable?)
When choices aren’t equally probable

When the choices have different probabilities (p_i), you get more information when learning of a unlikely choice than when learning of a likely choice

Information from choice $i = \log_2(1/p_i)$ bits

We can use this to compute the average information content taking into account all possible choices:

Average information content in a choice = $\sum p_i \cdot \log_2(1/p_i)$

This characterization of the information content in learning of a choice is called the information entropy or Shannon’s entropy.
Example

<table>
<thead>
<tr>
<th>choiceᵢ</th>
<th>pᵢ</th>
<th>(\log_2(1/pᵢ))</th>
</tr>
</thead>
<tbody>
<tr>
<td>“A”</td>
<td>1/3</td>
<td>1.58 bits</td>
</tr>
<tr>
<td>“B”</td>
<td>1/2</td>
<td>1 bit</td>
</tr>
<tr>
<td>“C”</td>
<td>1/12</td>
<td>3.58 bits</td>
</tr>
<tr>
<td>“D”</td>
<td>1/12</td>
<td>3.58 bits</td>
</tr>
</tbody>
</table>

Average information content in a choice
= (.333)(1.58) + (.5)(1) + (2)(.083)(3.58)
= 1.626 bits

Can we find an encoding where transmitting 1000 choices is close to 1626 bits on the average?

The “natural” fixed-length encoding uses two bits for each choice, so transmitting the results of 1000 choices requires 2000 bits.
Variable-length encodings
(David Huffman, MIT 1950)

Use shorter bit sequences for high probability choices, longer sequences for less probable choices.

<table>
<thead>
<tr>
<th>choice(_i)</th>
<th>(p_i)</th>
<th>encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>“A”</td>
<td>1/3</td>
<td>11</td>
</tr>
<tr>
<td>“B”</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>“C”</td>
<td>1/12</td>
<td>100</td>
</tr>
<tr>
<td>“D”</td>
<td>1/12</td>
<td>101</td>
</tr>
</tbody>
</table>

Huffman Decoding Tree

Average information
= (.333)(2)+(.5)(1)+(2)(.083)(3)
= 1.666 bits

Transmitting 1000 choices takes an average of 1666 bits...

to get a more efficient encoding (closer to information content) we need to encode **sequences of choices**, not just each choice individually. This is the approach taken by most file compression algorithms...
Huffman's Coding Algorithm

• Begin with the set S of symbols to be encoded as binary strings, together with the probability \(P(x) \) for each symbol \(x \). The probabilities sum to 1 and measure the frequencies with which each symbol appears in the input stream. In the example from the previous slide, the initial set S contains the four symbols and their associated probabilities from the table.

• Repeat the following steps until there is only 1 symbol left in S:
 – Choose the two members of S having lowest probabilities. Choose arbitrarily to resolve ties.
 – Remove the selected symbols from S, and create a new node of the decoding tree whose children (sub-nodes) are the symbols you've removed. Label the left branch with a "0", and the right branch with a "1".
 – Add to S a new symbol that represents this new node. Assign this new symbol a probability equal to the sum of the probabilities of the two nodes it replaces.
Huffman Coding Example

• Initially $S = \{(A, \frac{1}{3}) \ (B, \frac{1}{2}) \ (C, \frac{1}{12}) \ (D, \frac{1}{12})\}$

• First iteration
 – Symbols in S with lowest probabilities: C and D
 – Create new node
 – Add new symbol to $S = \{(A, \frac{1}{3}) \ (B, \frac{1}{2}) \ (CD, \frac{1}{6})\}$

• Second iteration
 – Symbols in S with lowest probabilities: A and CD
 – Create new node
 – Add new symbol to $S = \{(B, \frac{1}{2}) \ (ACD, \frac{1}{2})\}$

• Third iteration
 – Symbols in S with lowest probabilities: B and ACD
 – Create new node
 – Add new symbol to $S = \{(BACD, 1)\}$

• Done
Huffman Codes – the final word?

• Given static symbol probabilities, the Huffman algorithm creates an optimal encoding when each symbol is encoded separately.

• Huffman codes have the biggest impact on average message length when some symbols are substantially more likely than other symbols.

• You can improve the results by adding encodings for symbol pairs, triples, quads, etc. But the number of possible encodings quickly becomes intractable.

• Symbol probabilities change message-to-message, or even within a single message.

• Can we do adaptive variable-length encoding?
Adaptive Variable-length Codes

- Algorithm first developed by Lempel and Ziv, later improved by Welch. Now commonly referred to as the “LZW Algorithm”
- As message is processed a “string table” is built which maps symbol sequences to a fixed-length code
 - When processing byte streams, the first 256 table entries are initialized with the single character strings.
 - Table size = $2^{(\text{size of fixed-length code})}$
- Note: String table can be reconstructed by the decoder based on information in the encoded stream - the table, while central to the encoding and decoding process, is never transmitted!
LZW Encoding

STRING = get input symbol

WHILE there are still input symbols DO
 SYMBOL = get input symbol
 IF STRING + SYMBOL is in the string table THEN
 STRING = STRING + SYMBOL
 ELSE
 output the code for STRING
 IF string table is full THEN
 output code for reinitializing table
 reinitialize table
 END
 add STRING + SYMBOL to the string table
 STRING = SYMBOL
 END
END

output the code for STRING
Example: CHRIS_ repeated

- **End of first repeat**
 - Transmitted: C H R I S
 - Table: CH HR RI IS S_
 - Current String: _

- **End of second repeat**
 - Transmitted: _ [CH] [RI]
 - Table: CH HR RI IS S_ _C CHR
 - Current String: S_

- **End of third repeat**
 - Transmitted: [S_] [CHR] [IS]
 - Table: CH HR RI IS S_ _C CHR S_C CHRI IS_
 - Current String: _

- **End of fourth repeat**
 - Transmitted: [_C] [HR]
 - Table: CH HR RI IS S_ _C CHR S_C CHRI IS_ _CH HRI
 - Current String: IS_

- **End of fifth repeat**
 - Transmitted: [IS_] [CHRI]
 - Table: CH HR RI IS S_ _C CHR S_C CHRI IS_ _CH HRI IS_C CHRIS
 - Current String: S_
LZW Decoding

Read OLD_CODE
output OLD_CODE
SYMBOL = OLD_CODE

WHILE there are still input characters DO
 Read NEW_CODE
 IF NEW_CODE is not in the translation table THEN
 STRING = get translation of OLD_CODE
 STRING = STRING + SYMBOL
 ELSE
 STRING = get translation of NEW_CODE
 END
 output STRING
 SYMBOL = first character in STRING
 add OLD_CODE + SYMBOL to the translation table
 OLD_CODE = NEW_CODE
END
Summary

• Source coding: recode message stream to remove redundant information, aka compression. Our goal: match data rate to actual information content.
• Information content from choice \(i = \log_2(1/p_i)\) bits
• Shannon’s Entropy: average information content on learning a choice = \(\Sigma p_i \cdot \log_2(1/p_i)\)
• Huffman’s encoding algorithm builds optimal variable-length codes when symbols encoded individually
• LZW algorithm implements adaptive variable-length encoding