Sampling Continuous-Time Signals

- Impulse train and its Fourier Transform
- Impulse samples versus discrete-time sequences
- Aliasing and the Sampling Theorem
- Anti-alias filtering
- Comparison of FT, DTFT, Fourier Series

Copyright © 2007 by M.H. Perrott
All rights reserved.
The Need for Sampling

- The boundary between analog and digital
 - Real world is filled with continuous-time signals
 - Computers (i.e. Matlab) operate on sequences
- Crossing the analog-to-digital boundary requires sampling of the continuous-time signals
- Key questions
 - How do we analyze the sampling process?
 - What can go wrong?
An Analytical Model for Sampling

- **Two step process**
 - Sample continuous-time signal every T seconds
 - Model as *multiplication* of signal with *impulse train*
 - Create sequence from amplitude of scaled impulses
 - Model as *rescaling* of time axis ($T \rightarrow 1$)
 - Notation: replace impulses with stem symbols

Can we model this in the frequency domain?
Fourier Transform of Impulse Train

- Impulse train in time corresponds to impulse train in frequency
 - Spacing in time of T seconds corresponds to spacing in frequency of $1/T$ Hz
 - Scale factor of $1/T$ for impulses in frequency domain
 - Note: this is painful to derive, so we won't ...

- The above transform pair allows us to see the following with pictures
 - Sampling operation in frequency domain
 - Intuitive comparison of FT, DTFT, and Fourier Series
Frequency Domain View of Sampling

- Recall that multiplication in time corresponds to convolution in frequency

\[x(t)y(t) \iff X(j2\pi f) \ast Y(j2\pi f) \]

- We see that sampling in time leads to a periodic Fourier Transform with period \(\frac{1}{T} \)
Frequency Domain View of Output Sequence

- **Scaling in time leads to scaling in frequency**
 - Compression/expansion in time leads to expansion/compression in frequency

- **Conversion to sequence amounts to** $T \rightarrow 1$
 - Resulting Fourier Transform is now periodic with period 1
 - Note that we are now essentially dealing with the DTFT
Summary of Sampling Process

- Sampling leads to periodicity in frequency domain

We need to avoid overlap of replicated signals in frequency domain (i.e., aliasing)
The Sampling Theorem

- Overlap in frequency domain (i.e., aliasing) is avoided if:
 \[\frac{1}{T} - f_{bw} \geq f_{bw} \Rightarrow \frac{1}{T} \geq 2f_{bw} \]

- We refer to the minimum \(1/T \) that avoids aliasing as the Nyquist sampling frequency.
Example: Sample a Sine Wave

• Time domain: resulting sequence maintains the same period as the input continuous-time signal
• Frequency domain: no aliasing

Sample rate is well above Nyquist rate
Increase Input Frequency Further ...

Sample rate is at Nyquist rate

- Time domain: resulting sequence still maintains the same period as the input continuous-time signal
- Frequency domain: no aliasing
Increase Input Frequency Further …

Sample rate is at half the Nyquist rate

- Time domain: resulting sequence now appears as a DC signal!
- Frequency domain: aliasing to DC
Increase Input Frequency Further ...

• Time domain: resulting sequence is now a sine wave with a different period than the input
• Frequency domain: aliasing to lower frequency

Sample rate is well below the Nyquist rate
The Issue of High Frequency Noise

- We typically set the sample rate to be large enough to accommodate full bandwidth of signal.
- Real systems often introduce noise or other interfering signals at higher frequencies.
 - Sampling causes this noise to alias into the desired signal band.
Anti-Alias Filtering

Practical A-to-D converters include a continuous-time filter before the sampling operation:

- Designed to filter out all noise and interfering signals above $1/(2T)$ in frequency
- Prevents aliasing
Using the Impulse Train to Compare the FT, DTFT, and Fourier Series
Relationship Between FT and DTFT

FT
- **Time:** Continuous, Non-Periodic
- **Freq:** Non-Periodic, Continuous

DTFT
- **Time:** Discrete, Non-Periodic
- **Freq:** Periodic, Continuous

<table>
<thead>
<tr>
<th>FT</th>
<th>DTFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time: Continuous, Non-Periodic</td>
<td>Discrete, Non-Periodic</td>
</tr>
<tr>
<td>Freq: Non-Periodic, Continuous</td>
<td>Periodic, Continuous</td>
</tr>
</tbody>
</table>
Relationship Between FT and Fourier Series

<table>
<thead>
<tr>
<th>FT</th>
<th>Fourier Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time: Continuous, Non-Periodic</td>
<td>Continuous, Periodic</td>
</tr>
<tr>
<td>Freq: Non-Periodic, Continuous</td>
<td>Non-Periodic, Discrete</td>
</tr>
</tbody>
</table>
Summary

- The impulse train and its Fourier Transform form a very powerful analysis tool using *pictures*
 - Sampling, comparison of FT, DTFT, Fourier Series

- **Sampling analysis:**
 - **Time domain:** multiplication by an impulse train followed by re-scaling of time axis (and conversion to stem symbols)
 - **Frequency domain:** convolution by an impulse train followed by re-scaling of frequency axis

- **Prevention of aliasing**
 - Sample faster than Nyquist sample rate of signal bandwidth
 - Use anti-alias filter to cut out high frequency noise

- **Up next:** downsampling, upsampling, reconstruction