Fast Bilateral Filtering
Image Decomposition

• Splitting an image into two layers
 – Large-scale and small-scale components
 – Global and local contrasts, illumination and texture

• Caveats
 – Speed: This decomposition happens often, we cannot afford to wait.
 – Accuracy: This decomposition is the starting point of many applications, it has to be accurate.
Gaussian Convolution

input

smoothed (large scale)

residual (texture, small scale)

edge-preserving: Bilateral Filter

Obtained by subtraction
Halos are a Major Issue in Computational Photography

Bilateral filtering solves this problem.

Sample manipulation:
increasing local contrast three times.
Edge-preserving Smoothing

- Separate **large-scale component** from **texture**
- Prevent halos and blurry contours

Bilateral Filter

Obtained by subtraction
Traditional Denoising versus Computational Photography

Edge-preserving filtering introduced for denoising.

• Denoising: decompose into signal + noise
 – Throw away noise
 – Small kernels

• Computational photography: decompose into base + detail
 – Detail is valuable
 – Large kernels

ROWSER filter [Aurich 95, Smith 97, Tomasi 98]
Bilateral Filter: Ubiquitous in Computational Photography

- **Style transfer** [Bae 06]
 - Input (low-light video)
 - Output

- **Contrast management** [Durand 02]
 - Input
 - Output

- **Exposure correction** [Bennett 05]
 - Input
 - Output

- **Abstraction** [Winnemoeller 06]
 - Input
 - Output
Illustration a 1D Image

- 1D image = line of pixels

![Illustration of a 1D image with pixel intensities and positions](image)

- Better visualized as a plot
Definition

Gaussian blur

\[I^b_p = \sum_{q \in S} G_{\sigma_s}(\|p - q\|) I_q \]

- only spatial distance, intensity ignored

Bilateral filter

\[I^{bf}_p = \frac{1}{W_{bf}^p} \sum_{q \in S} G_{\sigma_s}(\|p - q\|) G_{\sigma_r}(\|I_p - I_q\|) I_q \]

- spatial and range distances
- weights sum to 1
Example on a Real Image

- Kernels can have complex, spatially varying shapes.
Bilateral Filter is Expensive

• Brute-force computation is slow (several minutes)
 – Two nested for loops:
 for each pixel, look at all pixels
 – Non-linear, depends on image content
 ⇒ no FFT, no pre-computation…

• Fast approximations exist [Durand 02, Weiss 06]
 – Significant *loss of accuracy*
 – *No formal understanding* of accuracy versus speed
Today

• We will reformulate the bilateral filter
 – Link with linear filtering
 – Fast and accurate algorithm
Questions ?
Outline

• Reformulation of the BF

• Fast algorithm to compute the BF

• Practical implementation

• Application and extension
 – Photographic style transfer
 – Bilateral grid
Bilateral Filter on 1D Signal

![Graph showing Bilateral Filter on 1D Signal](image)
Our Strategy

Reformulate the bilateral filter

- More complex space:
 - Homogeneous intensity
 - Higher-dimensional space

- Simpler expression: mainly a convolution
 - Leads to a fast algorithm
Link with Linear Filtering

1. Handling the Division

Handling the division with a projective space.

\[I_{p}^{bf} = \frac{1}{W_{p}^{bf}} \sum_{q \in S} G_{\sigma_s}(\|p - q\|) G_{\sigma_x}(\|I_p - I_q\|) I_q \]
Formalization: Handling the Division

\[I_{p}^{bf} = \frac{1}{W_{p}^{bf}} \sum_{q \in S} G_{\sigma_{s}}(\|p - q\|) G_{\sigma_{r}}(|I_{p} - I_{q}|) I_{q} \]

\[W_{p}^{bf} = \sum_{q \in S} G_{\sigma_{s}}(\|p - q\|) G_{\sigma_{r}}(|I_{p} - I_{q}|) \]

- Normalizing factor as homogeneous coordinate
- Multiply both sides by \(W_{p}^{bf} \)

\[
\begin{pmatrix}
W_{p}^{bf} & I_{p}^{bf} \\
W_{p}^{bf} & W_{p}^{bf}
\end{pmatrix}
=
\sum_{q \in S} G_{\sigma_{s}}(\|p - q\|) G_{\sigma_{r}}(|I_{p} - I_{q}|)
\begin{pmatrix}
I_{q} \\
1
\end{pmatrix}
\]
Formalization: Handling the Division

\[
\begin{pmatrix}
W_p^{bf} & I_p^{bf} \\
W_p^{bf} & W_p^{bf}
\end{pmatrix} = \sum_{q \in S} G_{\sigma_s}(\|p - q\|) G_{\sigma_t}(\|I_p - I_q\|) \begin{pmatrix}
W_q & I_q \\
W_q & W_q
\end{pmatrix} \text{ with } W_q = 1
\]

- Similar to homogeneous coordinates in projective space
- Division delayed until the end
Questions ?
Link with Linear Filtering

2. Introducing a Convolution

\[
\begin{pmatrix}
W_p^{bf} & I_p^{bf} \\
W_p^{bf} & W_p^{bf}
\end{pmatrix}
= \sum_{q \in S} \begin{pmatrix}
G_{\sigma_s}(\|p - q\|) & G_{\sigma_t}(\|I_p - I_q\|)
\end{pmatrix} \begin{pmatrix}
W_q & I_q \\
W_q & W_q
\end{pmatrix}
\]

2D Gaussian
Link with Linear Filtering
2. Introducing a Convolution

\[
\begin{pmatrix}
W_{bf}^{p} & I_{bf}^{p} \\
W_{bf}^{p} & W_{bf}^{p}
\end{pmatrix}
= \sum_{q \in S} G_{\sigma_{\text{space}}} (\|p - q\|) \ G_{\sigma_{\text{range}}} (\|I_{p} - I_{q}\|)
\begin{pmatrix}
W_{q} & I_{q} \\
W_{q} & W_{q}
\end{pmatrix}
\]

Corresponds to a 3D Gaussian on a 2D image. Result appeared previously in [Barash 02].
Link with Linear Filtering

2. Introducing a Convolution

\[
\begin{pmatrix}
W_p^{bf} & I_p^{bf} \\
W_p^{bf} & W_p^{bf}
\end{pmatrix}
= \sum_{(q, \zeta) \in S \times R} \sum \text{space-range Gaussian}
\]

sum all values multiplied by kernel \(\Rightarrow\) convolution
Link with Linear Filtering

2. Introducing a Convolution

\[
\begin{pmatrix}
W_p^{bf} & I_p^{bf} \\
W_p^{bf} & W_p^{bf}
\end{pmatrix}
= \sum \sum_{(q, \zeta) \in S \times R} \begin{pmatrix}
W_q & I_q \\
W_q & W_q
\end{pmatrix}
\]

result of the convolution
Link with Linear Filtering

2. Introducing a Convolution

\[
\begin{pmatrix}
W_p^{bf} & I_p^{bf} \\
W_p^{bf} & W_q
\end{pmatrix}
= \sum_{(q, \zeta) \in S \times R} \sum (W_q I_q)
\]

result of the convolution

space-range Gaussian
higher dimensional functions

Gaussian convolution

division

slicing
Reformulation: Summary

1. Convolution in higher dimension
 • expensive but well understood (linear, FFT, etc)

2. Division and slicing
 • nonlinear but simple and pixel-wise

Exact reformulation

linear: \((w^{bf} \cdot bf, w^{bf}) = g_{s, r} \otimes (w_i, w) \)

nonlinear: \(I_p^{bf} = \frac{w^{bf}(p, I_p) \cdot bf(p, I_p)}{w^{bf}(p, I_p)} \)
Questions ?
Outline

• Reformulation of the BF

• Fast algorithm to compute the BF

• Practical implementation

• Application and extension
 – Photographic style transfer
 – Bilateral grid
Recap:
- simple operations
- complex space
Strategy: downsampling convolution

Higher dimensional functions

Gaussian convolution

Downsample

Upsample

Division

Slicing
Sampling Theorem

• Sampling a signal at a least twice its smallest wavelength is enough.

Not enough
Sampling Theorem

- Sampling a signal at a least twice its smallest wavelength is enough.
Sampling Theorem

- Sampling a signal at a least twice its smallest wavelength is enough.

Enough
Signal processing analysis

higher dimensional functions

Low-pass filter
Gaussian convolution

Almost only low freq.
High freq. negligible

division

slicing
higher dimensional functions

“Safe” downsampling

D O W N S A M P L E

Gaussian convolution

Almost no information loss

U P S A M P L E

division

slicing

Almost no information loss
Fast Convolution by Downsampling

- Downsampling cuts frequencies above Nyquist limit (half the sampling rate)
 - Less data to process
 - But introduces error

- Evaluation of the approximation

- Efficient implementation
Accuracy versus Running Time

À 1 second instead of several minutes

• Finer sampling increases accuracy.
• More precise than previous work.

Accuracy as function of Running Time

Brute-force bilateral filter takes over 10 minutes.
Visual Results

• Comparison with previous work [Durand 02]
 – running time = 1s for both techniques

<table>
<thead>
<tr>
<th>input</th>
<th>exact BF</th>
<th>our result</th>
<th>prev. work</th>
</tr>
</thead>
</table>

difference with exact computation (intensities in [0:1])

1200 × 1600
More on Accuracy and Running Times
Kernel Size

- Larger kernels are faster because we downsample more.
 ➕ Useful for photography.

Running Time as a function of Kernel Size

Brute-force bilateral filter takes over 10 minutes.
Questions ?
Outline

• Reformulation of the BF

• Fast algorithm to compute the BF

• Practical implementation

• Application and extension
 – Photographic style transfer
 – Bilateral grid
Efficient Implementation

- Never build the full resolution 3D space
 - Bin pixels on the fly
 - Interpolate on the fly

- Separable Gaussian kernel

- 5-tap approximation
Sampling Rate

• 1 sample every sigma
 – Kernel parameters are all equal to 1 sample
 – 5-tap approximation is sufficient

 1 – 4 – 6 – 4 – 1
Fast Bilateral Filter

- input: image I
- Gaussian parameters σ_s and σ_r
- sampling rates s_s and s_r

- output: filtered image I^b

1. Initialize all w_i and w_i' values to 0. **Initialize the 3D grid to 0.**
Fast Bilateral Filter

input: image I
Gaussian parameters σ_s and σ_r
sampling rates s_s and s_r

output: filtered image I^b

1. Initialize all w_i and w_\downarrow values to 0. Initialize the 3D grid to 0.

2. Compute the minimum intensity value: Useful later to save space. $I_{\text{min}} \leftarrow \min_{(X,Y) \in S} I(X,Y)$
3. For each pixel \((X, Y) \in S\) with an intensity \(I(X, Y) \in \mathcal{R}\). **Look at each pixel.**

 (a) Compute the homogeneous vector \((wi, w)\):

 Create the data. \((wi, w) \leftarrow (I(X, Y), 1)\)
3. For each pixel \((X, Y) \in S\) with an intensity \(I(X, Y) \in \mathcal{R}\). Look at each pixel.

(a) Compute the homogeneous vector \((wi, w)\):

Create the data. \((wi, w) \leftarrow (I(X, Y), 1)\)

(b) Compute the downsampling coordinates (with \([\cdot]\) the rounding operator)

Compute the grid location. \((x, y, \zeta) \leftarrow \left(\left[\frac{X}{s_{s}}\right], \left[\frac{Y}{s_{s}}\right], \left[\frac{I(X, Y) - I_{\text{min}}}{s_{r}}\right]\right)\)
3. For each pixel \((X, Y) \in \mathcal{S}\) with an intensity \(I(X, Y) \in \mathcal{R}\). Look at each pixel.

(a) Compute the homogeneous vector \((w_i, w)\):

Create the data. \[(w_i, w) \leftarrow (I(X, Y), 1) \]

(b) Compute the downsampled coordinates (with \([\cdot]\) the rounding operator)

Compute the grid location. \[(x, y, \zeta) \leftarrow \left(\left[\frac{X}{s_s} \right], \left[\frac{Y}{s_s} \right], \left[\frac{I(X, Y) - I_{\min}}{s_r} \right] \right) \]

(c) Update the downsampled \(\mathcal{S} \times \mathcal{R}\) space

Update the grid. \[
\begin{pmatrix}
 w \downarrow i \downarrow (x, y, \zeta) \\
 w \downarrow (x, y, \zeta)
\end{pmatrix}
\leftarrow
\begin{pmatrix}
 w \downarrow i \downarrow (x, y, \zeta) \\
 w \downarrow (x, y, \zeta)
\end{pmatrix}
+ \begin{pmatrix}
 w_i \\
 w
\end{pmatrix}
\]
4. Convolv \((w_{\downarrow} i_{\downarrow}, w_{\downarrow}) \) with a 3D Gaussian \(g \) whose parameters are \(\sigma_s/s_s \) and \(\sigma_r/s_r \)

\[
(w^b_{\downarrow} i^b_{\downarrow}, w^b_{\downarrow}) \leftarrow (w_{\downarrow} i_{\downarrow}, w_{\downarrow}) \otimes g
\]

Convolve with 1 – 4 – 6 – 4 – 1 along each axis.

3 for loops needed, one for each axis.

In 3D, 15 samples (3 times 5) considered instead of 125 (5^3) for a full convolution.

Same result!
5. For each pixel \((X, Y) \in S\) with an intensity \(I(X, Y) \in \mathcal{R}\) **Look at each pixel.**

(a) Tri-linearly interpolate the functions \(w^b_{1} i^b_{1}\) and \(w^b_{1}\) to obtain \(W^b I^b\) and \(W^b\):

\[
W^b I^b(X, Y) \leftarrow \text{interpolate} \left(w^b_{1} i^b_{1}, \frac{X}{s_s}, \frac{Y}{s_s}, \frac{I(X, Y)}{s_r} \right)
\]

\[
W^b(X, Y) \leftarrow \text{interpolate} \left(w^b_{1}, \frac{X}{s_s}, \frac{Y}{s_s}, \frac{I(X, Y)}{s_r} \right)
\]
5. For each pixel \((X, Y) \in S\) with an intensity \(I(X, Y) \in R\) \textbf{Look at each pixel.}

(a) Tri-linearly interpolate the functions \(w^b\) and \(i^b\) to obtain \(W^b I^b\) and \(W^b:\)

\[
W^b I^b(X, Y) \leftarrow \text{interpolate} \left(w^b, \frac{X}{s_s}, \frac{Y}{s_s}, \frac{I(X, Y)}{s_r} \right)
\]

\[
W^b(X, Y) \leftarrow \text{interpolate} \left(w^b, \frac{X}{s_s}, \frac{Y}{s_s}, \frac{I(X, Y)}{s_r} \right)
\]

(b) Normalize the result

\[
I^b(X, Y) \leftarrow \frac{W^b I^b(X, Y)}{W^b(X, Y)}
\]
Comments

• Every sample is processed even if empty
 – The grid is coarse and fairly dense in 3D.
 • e.g. parameters (16,0.1): 256 pixels for 10 bins
 convolution spans 5 bins
 at least 50% occupancy
 – Simple data structure, simple sweep ⇒ fast

 – Maybe: can be improved
Complexity

- There is no nested loops over the whole set of samples
 - At most: “for each sample, for 5 samples”

\[O \left(|S| + \frac{|S|}{s_s^2} \frac{|R|}{s_r} \right) \]

- Creation + slicing “for each pixel”
- Convolution “for each sample”
Color Images

• Range domain = RGB, Lab… \Rightarrow 3D space

• Space (2D) + range (3D) \Rightarrow 5D space

• Same algorithm works but:
 – Larger space \Rightarrow more memory required
 – Larger, higher-dimensional space \Rightarrow slower
 – Still faster than brute force, especially for large kernels
Running Times (0.5 megapixels)
Fast Bilateral Filter

- No visible difference with brute force
- Based on signal processing argument
- Works well with medium to large kernels
- Easy to code
Outline

• Reformulation of the BF

• Fast algorithm to compute the BF

• Practical implementation

• Application and extension
 – Photographic style transfer
 – Bilateral grid
Control of Photographic Style using an Example

Transfer the visual style of to

Focus on black and white photographs.

Today’s presentation:
Quick overview with emphasis on BF.
Overview

Input Image

Global contrast

Careful combination

Post-process

Result

Split

Local contrast

Overview
Overview

Input Image

Split

Global contrast

Local contrast

Careful combination

Post-process

Result
Bilateral Filter

• Better than blurring: preserve edges (no halo).
• Fast computation.

base (result of the bilateral filter) **detail** (residual)
Global contrast

Careful combination

Post-process

Result

Input Image

Bilateral Filter

Local contrast
Local contrast

Global contrast

Input Image

Bilateral Filter

Careful combination

Post-process

Result
Global Contrast

- Intensity remapping of base layer

brighter input more contrasted

curve applied
Transfer: Histogram Matching

Applied only on the base
♀ Alter global contrast **independently** of local contrast
Global contrast

Input Image

Bilateral Filter

Intensity matching

Careful combination

Post-process

Local contrast

Result
Local contrast

Global contrast

Input Image

Bilateral Filter

Intensity matching

Careful combination

Post-process

Result
Texture Control with Detail Layer

- Halo-free manipulation
Measuring the Texture Level

• We introduce the notion of “textureness”
 – “amplitude of the local variations”
 – at each pixel, according to surrounding region

smooth region \Rightarrow low value

textured region \Rightarrow high value
“Textureness”: 1D Example

Previous work:
- low pass
 [Li 05, Su 05]

- edge-preserving filter

input signal

range weight set on input values

edges
Textureness Transfer

Step 1:
Histogram transfer

Step 2:
Per pixel scaling of detail layer to match desired textureness

input detail x 0.5 x 2.7 x 4.3
output detail
Local contrast

Global contrast

Input Image

Intensity matching

Careful combination

Post-process

Result

Bilateral Filter

Textureness matching
Global contrast

- Input Image
- Intensity matching
- Careful combination
- Post-process

Local contrast

- Image
- Textureness matching
- Result

Careful combination

- Bilateral Filter
Preserving Details

direct combination
(detail + base)

corrected result
Local contrast

Global contrast

Input Image

Intensity matching

Bilateral Filter

Constrained Poisson

Texturedness matching

Post-process

Result
Local contrast

Global contrast

Input Image

Bilateral Filter

Intensity matching

Constrained Poisson

Textureness matching

Post-process

Result
Additional Effects

- **Soft focus** (high frequency manipulation)
- **Film grain** (texture synthesis [Heeger 95])
- **Color toning** (chrominance = \(f(\text{luminance}) \))
Intensity matching

Bilateral Filter

Intensity matching

Constrained Poisson

Textureness matching

Soft focus Toning Grain

Global contrast

Local contrast

Input Image

Result
Recap

Global contrast

- Intensity matching
- Bilateral Filter
- Textureness matching
- Constrained Poisson
- Soft focus Toning Grain

Local contrast

- Input Image
- Result
Results

User provides input and model photographs.

- Our system *automatically* produces the result.
Comparison with Naïve Histogram Matching

Model

Snapshot, Alfred Stieglitz

Input

Naïve Histogram Matching

Local contrast, sharpness unfaithful

Our result
Comparison with Naïve Histogram Matching

Model
Clearing Winter Storm, Ansel Adams

Input

Histogram Matching

Local contrast too low

Our Result
Color Images

- Lab color space: modify only luminance
Fast Algorithm

• Fast BF and multi-grid Poisson solver

• A few seconds for 1-megapixel picture
 – Interactive feedback: important for usability, easy to test several options…
Bilateral Grid

• Extend the use of the volumetric representation of images

• Maps on graphics hardware
 – Real-time HD video processing
References

• Webpage with code, bibliography, PDFs
 http://people.csail.mit.edu/sparis/bf/

• Tech report (~course note), available on above webpage:
 MIT-CSAIL-TR-2006-073

• Two-scale Tone Management for Photographic Look
 Soonmin Bae, Sylvain Paris, and Frédo Durand
 SIGGRAPH 2006

• Real-time Edge-Aware Image Processing with the Bilateral Grid
 Jiawen Chen, Sylvain Paris, Frédo Durand

• Other acceleration technique, always fast but less flexible
 Fast Median and Bilateral Filtering.
 Ben Weiss.
 SIGGRAPH 2006
 http://www.shellandslate.com/fastmedian.html