Polygon Triangulation

Piotr Indyk
(and Daniel Vlasic)
Triangulation: Definition

• Triangulation of a simple polygon P: decomposition of P into triangles by a maximal set of non-intersecting diagonals
• Diagonal: an open line segment that connects two vertices of P and lies in the interior of P
• Triangulations are usually not unique
Example motivation: Guarding an Art Gallery

- An art gallery has several rooms
- Each room guarded by cameras that see in all directions
- Want to have few cameras that cover the whole gallery
Triangulation: Existence

• Theorem:
 – Every simple polygon admits a triangulation
 – Any triangulation of a simple polygon with n vertices consists of exactly $n-2$ triangles

• Proof:
 – Base case: $n=3$
 • 1 triangle ($=n-2$)
 • trivially correct
 – Inductive step: assume theorem holds for all $m<n$
Inductive step

• First, prove existence of a diagonal:
 – Let \(v \) be the leftmost vertex of \(P \)
 – Let \(u \) and \(w \) be the two neighboring vertices of \(v \)
 – If open segment \(uw \) lies inside \(P \), then \(uw \) is a diagonal
Inductive step ctd.

• If open segment uw does not lie inside P
 – there are one or more vertices inside triangle uvw
 – of those vertices, let v' be the farthest one from uw
 – segment vv' cannot intersect any edge of P, so vv' is a diagonal

• Thus, a diagonal exists
• Can recurse on both sides
• Math works out:
 $$(n1-2) + (n2-2) = (n1+n2-2)-2$$
Back to cameras

• Where should we put the cameras?
• Idea: cover every triangle
 – 3-color the nodes (for each edge, endpoints have different colors)
 – Each triangle has vertices with all 3 colors
 – Can choose the least frequent color class → $\left\lfloor \frac{n}{3} \right\rfloor$ cameras suffice
 – There are polygons that require $\left\lceil \frac{n}{3} \right\rceil$ cameras
3-coloring Always Possible

• Simple inductive argument (Ilya)
 – Find the diagonal and split the polygon
 – Independently 3 color both sub-polygons
 – Adjust the colorings so that the colors of the vertices on the diagonal match

• More complex, but linear-time algorithm:
 – Take the dual graph G
 – This graph has no cycles
 – Find 3-coloring by DFS traversal of G:
 • Start from any triangle and 3-color its vertices
 • When reaching new triangle we cross an already colored diagonal
 • Choose the third color to finish the triangle
How to triangulate fast

• Partition the polygon into y-monotone parts, i.e., into polygons P such that an intersection of any horizontal line L with P is connected

• Triangulate the monotone parts

• Assume all x,y-coordinates distinct, to avoid headache
Monotone partitioning

- Line sweep (top down)
- Vertices where the direction changes downward<>upward are called *turn vertices*
- To have y-monotone pieces, we need to get rid of turn vertices:
 - when we encounter a turn vertex, it might be necessary to introduce a diagonal and split the polygon into pieces
Vertex Ontology

February 22, 2007
Removing split

• To partition P into y-monotone pieces, get rid of split and merge vertices
 – add a diagonal going upward from each split vertex

• Where do the edges go?
Helpers

- Let $\text{helper}(e_j)$ be the lowest vertex above the sweep-line such that the horizontal segment connecting the vertex to e_j lies inside P.
Removing Split Vertices

• For a split vertex v_i, let e_j be the edge immediately to the left of it
• Add a diagonal from v_i to $helper(e_j)$
• Question: does the new edge intersect any existing one?
• Question II: does the new edge introduce any merge vertices?
 – No
 – The edge goes “down” from the helper
 – Merge vertex is incident to only “up” edges
→ Can get rid of merge vertices by a second scan (in reverse direction)
Proof

• Recall:
 – v_i is the split vertex
 – e_j is the edge to the left of v_i
 – $h = \text{helper}(e_j)$

• The segment $h-v_i$ does not intersect any other boundary segment because:
 – The dotted segments do not intersect any polygon boundaries, by def. Same holds for e_j.
 – If there was any polygon segment intersecting $h-v_i$, one of its endpoints would have to be inside the yellow region, and the other outside of the yellow region
 – Lemma (next slide): given a collection of such segments, at least one inside endpoint (say, p) must be reachable from e_j horizontally, without intersecting any other segments

• Note: the edges added earlier are, for the above purposes, considered to be the boundary edges
Proof of the Lemma

• Pick \(p \) that is the furthest away from the line \(L \) passing through \(h \) and \(vi \)
• Assume that the horizontal ray from \(p \) towards \(ej \) hits another segment \(s \), splitting it into two segments, say \(s' \) and \(s'' \)
• Then if we continue along one of \(s' \) or \(s'' \), we get further away from \(L \). Thus, when we hit an endpoint, it is even further away from \(L \) than \(p \)
• A contradiction!
Digression

• We could try to make that argument for an endpoint p that is closest to e_j (rather than furthest from L)

• This does not work! See example
The algorithm

• Use plane sweep method
 – move sweep line downward over the plane (need to sort first)
 – halt the line on every vertex
 – handle the event depending on the vertex type
 • Update the helper
 • Add the diagonal if a split vertex

• Time: $O(n \log n)$
Triangulating monotone polygon
Triangulating monotone polygons

• Single pass from top to bottom
• Keeps removing triangles
• Invariants:
 – Top vertex convex
 – Other vertices form a concave chain
Altogether

• Can triangulate a polygon in $O(n \log n)$ time
• Fairly simple $O(n \log^* n)$ time algorithms
• Very complex $O(n)$ time algorithm
Removing Merge Vertices

- For a merge vertex v_i, let e_j be the edge immediately to the left of it.
- v_i becomes $helper(e_j)$ once we reach it.
- Whenever the $helper(e_j)$ is replaced by some vertex v_m, add a diagonal from v_m to v_i.
- If v_i is never replaced as $helper(e_j)$, we can connect it to the lower endpoint of e_j.

Fanaoa 22, 2007