Orthogonal Range Queries

Piotr Indyk
Range Searching in 2D

• Given a set of n points, build a data structure that for any query rectangle R, reports all points in R.
Kd-trees [Bentley]

- Not the most efficient solution in theory
- Very popular in practice
- Algorithm:
 - Choose x or y coordinate (alternate)
 - Choose the median of the coordinate; this defines a horizontal or vertical line
 - Recurse on both sides
- We get a binary tree:
 - Size: $O(N)$
 - Depth: $O(\log N)$
 - Construction time: $O(N \log N)$
Kd-tree: Example

Each tree node v corresponds to a region $\text{Reg}(v)$.
Kd-tree: Range Queries

- Recursive procedure, starting from \(\text{v=root} \)
- Search \((\text{v}, \text{R})\):
 - If \(\text{v} \) is a leaf, then report the point stored in \(\text{v} \) if it lies in \(\text{R} \)
 - Otherwise, if \(\text{Reg(v)} \) is contained in \(\text{R} \), report all points in the subtree of \(\text{v} \)
 - Otherwise:
 - If \(\text{Reg(left(v))} \) intersects \(\text{R} \), then Search\((\text{left(v)}, \text{R})\)
 - If \(\text{Reg(right(v))} \) intersects \(\text{R} \), then Search\((\text{right(v)}, \text{R})\)
Query demo
Query Time Analysis

• We will show that Search takes at most $O(n^{1/2} + P)$ time, where P is the number of reported points.
 - The total time needed to report all points in all sub-trees (i.e., taken by step b) is $O(P)$.
 - We just need to bound the number of nodes v such that $Reg(v)$ intersects R but is not contained in R.
 I.e., the boundary of R intersects the boundary of $Reg(v)$.
 - Will make a “gross” overestimation: will bound the number of $Reg(v)$ which are crossed by any of the 4 horizontal/vertical lines.
Query Time Continued

• What is the max number \(Q(n) \) of regions in an \(n \)-point kd-tree intersecting (say, vertical) line?
 – If we split on \(x \), \(Q(n) = 1 + Q(n/2) \)
 – If we split on \(y \), \(Q(n) = 1 + 2 \cdot Q(n/2) \)
 – Since we alternate, we can write \(Q(n) = 2 + 2Q(n/4) \)

• This solves to \(O(n^{1/2}) \)
Analysis demo
A Faster Solution

• Query time: $O(\log^2 n + P)$
• Space: $O(n \log n)$
Idea I: Ranks

- Sort x and y coordinates of input points
- For a rectangle $R = [x_1, x_2] \times [y_1, y_2]$, we have point $(u, v) \in R$ iff
 - $\text{succ}_x(x_1) \leq \text{rank}_x(u) \leq \text{pred}_x(x_2)$
 - $\text{succ}_y(y_1) \leq \text{rank}_y(v) \leq \text{pred}_y(y_2)$
- Thus we can effectively replace point coordinates by their rank
Dyadic intervals

• Assume \(n \) is a power of 2. Dyadic intervals are:
 – \([1,1] , [2,2] \ldots [n,n]\)
 – \([1,2] , [3,4] \ldots [n-1,n]\)
 – \([1,4] , [5,8] \ldots [n-3,n]\)
 – \ldots\)
 – \([1\ldots n]\)

• Any interval \(\{a\ldots b\} \) can be decomposed into \(O(\log n) \) dyadic intervals:
 – Imagine a full binary tree over \(\{1\ldots n\}\)
 – Each node corresponds to a dyadic interval
 – Any interval \(\{a\ldots b\} \) can be “covered” using \(O(\log n) \) sub-trees
Range Trees: Construction

- For each level $l=1\ldots \log n$, partition x-ranks using level-l dyadic intervals
- This induces vertical strips
- Within each strip, construct a BST on y-coordinates
Range Trees
Range Trees
Analysis

• Each point occurs in $\log n$ different levels
• Space: $O(n \log n)$
• How do we implement the query?
Range trees: Query procedure

- Consider query \(R = X \times Y \)
- Partition \(X \) into dyadic intervals
- For each interval, query the corresponding strip BST using \(Y \)
Query procedure
Query procedure
Analysis ctd.

• Query time:
 – $O(\log n + \text{output})$ time per strip
 – $O(\log n)$ strips
 – Total: $O(\log^2 n + P)$

• Faster than kd-tree, but space $O(n \log n)$

• Recursive application of the idea gives
 – $O(\log^d n)$ query time
 – $O(n \log^{d-1} n)$ space

for the d-dimensional problem
Bonus material
Approximate Nearest Neighbor (ANN)

• Given: a set of points P in the plane

• Goal: given a query point q, and $\varepsilon > 0$, find a point p' whose distance to q is at most $(1+\varepsilon)$ times the distance from q to its nearest neighbor
Our “solution”

- We will “solve” the problem using kd-trees…
- …under the assumption that all leaf cells of the kd-tree for P have bounded aspect ratio
- Assumption somewhat strict, but satisfied in practice for most of the leaf cells
- We will show
 - $O(\log n/\varepsilon^2)$ query time
 - $O(n)$ space (inherited from kd-tree)
ANN Query Procedure

• Locate the leaf cell containing q

• Enumerate all leaf cells C in the increasing order of distance from q (denote it by r)
 – Update p’ so that it is the closest point seen so far
 – Note: r increases, dist(q,p’) decreases

• Stop if dist(q,p’)<(1+ε)*r
Analysis

• Running time:
 – All cells C seen so far (except maybe for the last one) have diameter $> \varepsilon r$
 – …Because if not, then $p(C)$ would have been a $(1+\varepsilon)$-approximate nearest neighbor, and we would have stopped
 – The number of cells with diameter εr, bounded aspect ratio, and touching a ball of radius r is at most $O(1/\varepsilon^2)$