Point Location

Piotr Indyk
(and Sergi Elizalde and David Pritchard)
Point Location
Definition

• Given: a planar subdivision S
• Goal: build a data structure that, given a query point, determines which face of the planar subdivision that point lies in
• Details: planar subdivision given by:
 – Vertices, directed edges and faces
 – Perimeters of polygons stored in doubly linked lists
 – Can switch between faces, edges and vertices in constant time
First attempt

- Want to divide the plane into easily manageable sections.
- Idea: Divide the graph into slabs, by drawing a vertical line through every vertex of the graph

- Given the query point, do binary search in the proper slab
Analysis

• Query time: $O(\log n)$
• Space: $O(n^2)$
Second attempt

• Too much splitting!
• Idea: stop the splitting lines at the first segment of the subdivision
• We get a *trapezoidal decomposition* $T(S)$ of S
• The number of edges still $O(n)$
Assumptions/Simplifications

• Add a bounding box that contains S
• Assume that the x-coordinates of coordinates and query are distinct
Answering the query

• Build a decision tree:
 – Leaves: individual trapezoids
 – Internal nodes: YES/NO queries:
 • point query: does q lie to the left or the right of a given point?
 • segment query: does q lie above or below a given line segment?
Decision tree: Example
DT Construction: Overview

• Initialization: create a T with the bounding box R as the only trapezoid, and corresponding DT D
• Compute a random permutation of segments $s_1 \ldots s_n$
• For each segment s_i:
 • Find the set of trapezoids in T properly intersected by s_i
 • Remove them from T and replace them by the new trapezoids that appear because of the insertion of s_i
 • Remove the leaves of D for the old trapezoids and create leaves for the new ones + update links
Some notation

Segments $\text{top}(\Delta)$ and $\text{bottom}(\Delta)$:
Some notation, ctd.

Points leftp(\(\Delta\)) and rightp(\(\Delta\)):

Each \(\Delta\) is defined by \(\text{top}(\Delta), \text{bottom}(\Delta), \text{leftp}(\Delta), \text{rightp}(\Delta)\)
Some notation, ctd.

• Two trapezoids are *adjacent* if they share a vertical boundary

• How many trapezoids can be adjacent to Δ?

• At most 4
Adding new segment s_i

- Let $\Delta_0 \ldots \Delta_k$ be the trapezoids intersected by s_i (left to right)
- To find them:
 - Δ_0 is the trapezoid containing the left endpoint p of s_i – find it by querying the data structure built so far.
 - Δ_{j+1} must be a right neighbor of Δ_j.
Updating T

- Draw vertical extensions through the endpoints of s_i that were not present, partitioning $\Delta_0 \ldots \Delta_k$
- Shorten the vertical extensions that now end at s_i, merging the appropriate trapezoids
Updating D

- Remove the leaves for $\Delta_0 \ldots \Delta_k$
- Create leaves for the new trapezoids
- If Δ_0 has the left endpoint p of s_i in its interior, replace the leaf for Δ_0 with a point node for p and a segment node for s_i (similarly with Δ_k)
- Replace the leaves of the other trapezoids with single segment nodes for s_i
- Make the outgoing edges of the inner nodes point to the correct leaves
Analysis

• Theorem: In the expectation we have
 – Running time: $O(n \log n)$
 – Storage: $O(n)$
 – Query time $O(\log n)$ for a fixed q
Expected Query Time

• Fix a query point q, and consider the path in D traversed by the query.
• Define
 – $S_i = \{s_1, s_2, ..., s_i\}$
 – $X_i =$ number of nodes added to the search path for q during iteration i
 – $P_i =$ probability that some node on the search path of q is created in iteration i
 – $\Delta_q(S_i) =$ trapezoid containing q in $T(S_i)$
• From our construction, $X_i \leq 3$; thus $E[X_i] \leq 3P_i$
• Note that $P_i = \Pr[\Delta_q(S_i) <> \Delta_q(S_{i-1})]$
Expected Query Time ctd.

• What is \(P_i = \Pr[\Delta_q(S_i) <> \Delta_q(S_{i-1})] \) ?

• Backward analysis: How many segments in \(S_i \) affect \(\Delta_q(S_i) \) when they are removed?

• At most 4

• Since they have been chosen in random order, each one has probability \(1/i \) of being \(s_i \)

• Thus \(P_i \leq 4/i \)

• \(\mathbb{E}[\sum_i X_i] = \sum_i \mathbb{E}[X_i] \leq \sum_i 3P_i \leq \sum_i 12/i = O(\log n) \)
Expected Storage

- Number of nodes bounded by $O(n) + \sum_i k_i$, where $k_i =$ number of new trapezoids created in iteration i
- Define $d(\Delta, s)$ to be 1 iff Δ disappears from $T(S_i)$ when s removed from S_i
- $E[k_i] = \left[\sum_{s \in S_i} \sum_{\Delta \in T(S_i)} d(\Delta, s) \right] / i \leq ?$
 \[\leq 4 \]
Expected Time

• The time needed to insert s_i is $O(k_i)$ plus the time needed to locate the left endpoint of s_i in $T(S_i)$
• Expected running time = $O(n \log n)$
Extensions

• Can obtain worst-case $O(\log n)$ query time
 – Show $O(\log n)$ for a fixed query holds with probability $1-1/(Cn^2)$ for large C
 – There are $O(n^2)$ truly different queries