Signals and Systems
Spring 2008

Lecture #1 (2/5/2008)
Prof. Qing Hu

(Slides thanks to D. Boning, D. Freeman, T. Weiss, J. White, and A. Willsky)

1) Administrative details
2) Signals

“Figures and images used in these lecture notes by permission, copyright 1997 by Alan V. Oppenheim and Alan S. Willsky”

6.003 Staff

- Lecturer: Prof. Qing Hu (qhu@mit.edu)
- Head TA: Paul Azunre (azunre@mit.edu)
- Recitation instructors:
 Prof. Luca Daniel (dluca@mit.edu)
 Prof. Cardinal Warde (warde@mit.edu)
 Prof. Berthold K. P. Horn (bkphorn@mit.edu)
- TAs:
 Yajun Fang (yjfang@mit.edu)
 Shay Maymon (maymon@mit.edu)
 Sanquan Song (sanquan@mit.edu)
6.003 Course Structure

- Weekly lectures (Tuesday and Thursday)
 — Introduce/derive main theorems and properties, examples and demos.

- Weekly recitations (Wednesday and Friday)
 — More detailed discussions and examples to reinforce the lecture materials.

- Weekly tutorials (Monday and Tuesday)
 — Help with homework.

- Office hours (TBD)

6.003 Texts

- Text book

 A. V. Oppenheim and A. S. Willsky, with S. H. Nawab,

 Signals and Systems (total 11 chapters)

- MATLAB text:

 J. R. Buck, M. M. Daniel, and A. C. Singer (BDS),

 Computer Explorations in Signals and Systems Using MATLAB (total 11 chapters)
6.003 Grading Scheme
(4-2-9)

- Quiz 1 (March 13) 20%
- Quiz 2 (April 17) 20%
- Final (May 19-23) 40%
- Problem sets* (10 + 1) and participation 20%

* Problem sets include both analytical parts and MATLAB exercises. Handed out on Thursdays and due the following Wednesday except the quiz week.

6.003 Policies

Collaboration Policy
- Discussion of concepts in homework is encouraged.
- Copying other people’s homework or codes is not permitted.

Deadlines
- Homework must be submitted in recitation on due date. Late submission will receive substantially reduced credit.

Homework Extension Policy
- Every student gets one extension. Must notify the his/her TA before midnight before the due date.
6.003 Syllabus

- Lectures 1-4: Introduction of signals and systems, LTI and convolution.
- Lectures 5-7: Fourier series, frequency response and filtering
- Lectures 8-12: Fourier transform
- Lectures 13-16: Sampling and modulation
- Lectures 17-19: Laplace transform
- Lectures 20-21: Feedback
- Lectures 22-23: z-transform
- Lecture 24: Fun lecture, music CD recording and playback

Signals and Systems

6.003 is about introducing mathematical techniques to analyze signals and synthesize systems which process signals.

- Signals are something that vary with “time”.
- Systems process input signals to produce output signals.

Examples of signals

- Electrical signals --- voltages and currents in a circuit
- Acoustic signals --- audio or speech signals (analog or digital)
- Video signals --- intensity variations in an image (e.g. a CAT scan)
- Biological signals --- sequence of bases in a gene
- In 6.003, we will treat \textit{noise} as unwanted signals

Signal Classification

Type of Independent Variable

Time is often the independent variable. Example: the electrical activity of the heart recorded with chest electrodes — the electrocardiogram (ECG or EKG).
The variables can also be spatial

In this example, the signal is the intensity as a function of the spatial variables x and y.

Independent Variable Dimensionality

An independent variable can be 1-D (t in the EKG) or 2-D (x, y in an image).

In 6.003, focus on 1-D for mathematical simplicity but the results can be extended to 2-D or even higher dimensions. Also, we will use a generic time t for the independent variable, whether it is time or space.
Continuous-time (CT) Signals

- Most of the signals in the physical world are CT signals, since the time scale is infinitesimally fine, so are the spatial scales. E.g. voltage & current, pressure, temperature, velocity, etc.

Discrete-time (DT) Signals

- $x[n]$, n — integer, time varies discretely

- Examples of DT signals in nature:
 - DNA base sequence
 - Population of the nth generation of certain species

- Notation in 6.003: $x(t)$ — CT, $x[n]$ — DT
Many human-made Signals are DT

Ex.#1 Weekly Dow-Jones industrial average

Ex.#2 digital image

Ex#3. ticking clock

Why DT? — Can be processed by modern digital computers and digital signal processors (DSPs).

Signals with symmetry

- Periodic signals
 CT \[x(t) = x(t + T) \]

\[x(t) \]

\[\cdots, -T, 0, T, 2T, \cdots \]

- Ex. 60-Hz power line, computer clock, etc.

DT \[x[n] = x[n + N] \]

\[x[n] \]

\[\cdots, n \cdots \]
Signals with symmetry (continued)

- Even and odd signals

 Even \(x(t) = x(-t) \) or \(x[n] = x[-n] \)

 \[x(t) = \begin{cases} x(-t) & \text{for even signals} \\ 0 & \text{for odd signals} \end{cases} \]

 Odd \(x(t) = -x(-t) \) or \(x[n] = -x[-n] \)

 or \(x(0) = 0 \)

 \[x[n] = 0 \]

Signals with symmetry (continued)

- Any signals can be expressed as a sum of Even and Odd signals. That is:

 \[x(t) = x_{\text{even}}(t) + x_{\text{odd}}(t) , \]

 where

 \[x_{\text{even}}(t) = \frac{[x(t) + x(-t)]}{2} , \]

 \[x_{\text{odd}}(t) = \frac{[x(t) - x(-t)]}{2} . \]

Ex. DT unit-step function.
Right- and Left-Sided Signals

A right-sided signal is zero for $t < T$ and a left-sided signal is zero for $t > T$, where T can be positive or negative.

Bounded and Unbounded Signals

Whether the output signal of a system is bounded or unbounded determines the stability of the system.
Real and Complex Signals

In general, x is a complex quantity and has:

- a real and imaginary part, or equivalently
- a magnitude and a phase angle.

We will use whichever form that is convenient.

A very important class of signals is complex exponentials:

- CT signals of the form $x(t) = e^{st}$
- DT signals of the form $x[n] = z^n$

where z and s are complex numbers.

For example, suppose $s = j\pi/8$ and $z = e^{j\pi/8}$, the exponentials are purely imaginary, then the real parts are

$$
\Re \{x(t) = e^{st}\} = \Re \{e^{j\pi t/8}\} = \cos(\pi t/8),
$$

$$
\Re \{x[n] = z^n\} = \Re \{e^{j\pi n/8}\} = \cos[\pi n/8].
$$
For example, suppose \(s = \sigma + j\omega \) for a CT signal

\[
\mathcal{R}\{x(t) = e^{st}\} = \mathcal{R}\{e^{(\sigma+j\omega)t}\} = e^{\sigma t} \cos(\omega t),
\]

\(\sigma > 0 \)

\(\sigma < 0 \)

For example, suppose \(z = e^{(\sigma+j\omega)} \), the exponential is complex for a DT signal, then the real part is

\[
\mathcal{R}\{x[n] = z^n\} = \mathcal{R}\{e^{(\sigma+j\omega)n}\} = e^{\sigma n} \cos(\omega n).
\]

\(\sigma > 0 \)

\(\sigma < 0 \)
Summary

• We are awash in a sea of signal — sounds, visual, electrical, thermal, mechanical, etc.

• Signals can be time-varying or spatially varying, can be a function of multiple variables. However, in 6.003, we will mostly deal with 1D signals and use a generic time t to represent the variable, whether it is time, space, or something else.

• DT signals and systems become more and more important for signal processing, and will be a major part in 6.003.

Next lecture covers:
O & W pp. 38-56