Today

- Binary Search Tree (BST):
 - A data structure
 - Supports operations:
 - Insert
 - Delete
 - Search (Successor)
 - Works in comparison model
- Red-Black Tree
 - An efficient variant of BST

Binary Search Tree (BST)

- Each node x has:
 - $\text{key}[x]
 - Pointers:
 - $\text{left}[x]
 - $\text{right}[x]
 - $p[x]$

- Property: for any node x:
 - For all nodes y in the left subtree of x:
 \[\text{key}[y] \leq \text{key}[x] \]
 - For all nodes y in the right subtree of x:
 \[\text{key}[y] \geq \text{key}[x] \]

- Given a set of keys, is BST for those keys unique?

No uniqueness

BST as a data structure

- Operations:
 - $\text{INSERT}(T, z)$: inserts node z into the tree T
 (assumes that $\text{key}[z]$ not in T)
 - $\text{DELETE}(T, z)$: deletes node z from the tree T
 (assumes z exists in T)
 - $\text{SEARCH}(x, k)$: returns a node with key equal to k
 (if it exists), starting from a node x
Search

SEARCH (x,k)

if \(x = \text{NIL} \) or \(\text{key}[x] = k \)
then return \(x \)
if \(k < \text{key}[x] \)
then return **SEARCH** (left[x],k)
else return **SEARCH** (right[x],k)

Examples:
- **SEARCH** (root,8)
- **SEARCH** (root,8.5)

Modified Search: Search’

SEARCH’ (x,k)

\(y \leftarrow \text{NIL} \)
while \(x \neq \text{NIL} \) do
if \(k < \text{key}[x] \)
then \(y \leftarrow x \)
if \(k < \text{key}[x] \)
then \(x \leftarrow \text{left}[x] \)
else \(x \leftarrow \text{right}[x] \)
return \(y \)

Example: **SEARCH’** (root,8.5)

SEARCH’ returns either:
- the predecessor of \(k \) (largest tree element smaller than \(k \)), or
- the successor of \(k \) (smallest tree element larger than \(k \))

This is more than just checking if \(k \) is in the tree or not!

Insert

INSERT (T,z)

\(y \leftarrow \text{SEARCH’} (\text{root}[T],\text{key}[z]) \)

\(p[z] \leftarrow y \)
if \(y = \text{NIL} \)
then \(\text{root}[T] \leftarrow z \)
else if \(\text{key}[z] < \text{key}[y] \)
then \(\text{left}[y] \leftarrow z \)
else \(\text{right}[y] \leftarrow z \)

Example: **INSERT** (T,8.5)

Analysis

- How much time does all of this take?
- Worst case: \(O(\text{height}) \)
- What is the worst possible height after \(n \) insertions?
 - Worst height = \(n-1 \)
 - Will need to **rebalance** the tree after insertions
 - Ensure the height is \(O(\log n) \)
 - **Balanced** search trees

Search Tree Landscape

- AVL trees
- 2-3 trees
- **Red-black trees**
- 2-3-4 trees
- Treaps
- Leftist trees
- AA tree
- Skip lists

Red-black trees

BSTs with an extra one-bit **color** field in each node.

Red-black properties:
1. Every node is either red or black.
2. The root and leaves (\(\text{NIL} \)'s) are black.
3. If a node is red, then its parent is black.
4. All paths from any node \(x \) to a descendant leaf have the same number of black nodes.
Example of a red-black tree

Use of red-black trees

- What properties would we like to prove about red-black trees?
 - They always have $O(\log n)$ height (proof later)
 - There is an $O(\log n)$-time insertion procedure which preserves the red-black properties

Inserting into RB tree

Suppose we want to insert 7.5 into the tree:

Rotations

Rotations maintain the inorder ordering of keys:
- $a \in \alpha, b \in \beta, c \in \gamma \Rightarrow a \leq A \leq b \leq B \leq c$

A rotation can be performed in $O(1)$ time.

Rotations can reduce height

RB-Insert: Overview

- Perform the “usual” tree insertion
- Color the new node red
- Rebalancing:
 - Start from the inserted node x
 - Apply one of 3 cases
 - Possibly recurse on an ancestor node (new x)
- Invariant after each step:
 - All properties are satisfied in the x’s subtree
 - Only either Prop. 3 or Prop 2. or can be violated (but not both)
Case 1: “Uncle” node D is red

Case 2: “Uncle” node D is black and x is a right child

Case 3: “Uncle” node D is black and x is a left child

Red-black tree wrap-up

Case 1: “Uncle” node D is red

Case 2: “Uncle” node D is black and x is a right child

Case 3: “Uncle” node D is black and x is a left child

Height of a red-black tree

Theorem. A red-black tree with n keys has height
\[h \leq 2 \log(n + 1). \]

ARGUMENT:
- Merge red nodes into their black parents.

Height of a red-black tree

Theorem. A red-black tree with n keys has height
\[h \leq 2 \log(n + 1). \]

ARGUMENT:
- Merge red nodes into their black parents.
- This process produces a tree in which each node has 2, 3, or 4 children.
- The 2-3-4 tree has uniform depth \(h' \) of leaves (by Property 4)
Height of 2-3 tree

- What is the maximum height h' of a 2-3-4 tree with n nodes?
- Alternatively, what is the minimum number of nodes in a 2-3-4 tree of height h'?
- It is $1 + 2^1 + 2^2 + \ldots + 2^h = 2^{h+1} - 1$
- $n \geq 2^{h-1} - 1 \Rightarrow h' = O(\log n)$
- Full binary tree is the worst-case example!

Conclusions

- Can maintain BSTs:
 - $O(\log n)$ height
 - $O(\log n)$ operations per update