Definitions: Paths in graphs
Consider a digraph $G = (V, E)$ with edge-weight function $w : E \rightarrow \mathbb{R}$.
The weight of path $p = v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k$ is defined to be:
$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1}).$$

Example:

```
\begin{tikzpicture}
    \node[shape=circle,draw=black] (u) at (0,0) {$v_1$};
    \node[shape=circle,draw=black] (v) at (1,0) {$v_2$};
    \node[shape=circle,draw=black] (w) at (2,0) {$v_3$};
    \node[shape=circle,draw=black] (x) at (3,0) {$v_4$};
    \node[shape=circle,draw=black] (y) at (4,0) {$v_5$};
    \draw[->, thick] (u) to node [above] {$4$} (v);
    \draw[->, thick] (v) to node [above] {$-2$} (w);
    \draw[->, thick] (w) to node [above] {$-5$} (x);
    \draw[->, thick] (x) to node [above] {$1$} (y);
    \end{tikzpicture}
```

$w(p) = -2$

Definitions: Shortest paths
A shortest path from u to v is a path of minimum weight from u to v.
The shortest-path weight from u to v is defined as
$$\delta(u, v) = \min \{ w(p) : p \text{ is a path from } u \text{ to } v \}.$$ Note: $\delta(u, v) = \infty$ if no path from u to v exists.

Shortest path properties: 1. Well-definedness
If a graph G contains a negative-weight cycle, then some shortest paths do not exist.

Example:

```
\begin{tikzpicture}
    \node[shape=circle,draw=black] (u) at (0,0) {$u$};
    \node[shape=circle,draw=black] (v) at (1,0) {$v$};
    \node[shape=circle,draw=black] (w) at (2,0) {$w$};
    \draw[->, thick] (u) to node [above] {$<0$} (v);
    \draw[->, thick] (v) to node [above] {$<0$} (w);
    \draw[->, thick] (w) to node [above] {$<0$} (u);
    \end{tikzpicture}
```

<0: Shortest path does not exist >0: Cycle can be removed $=0$: Choose no cycle, same cost, fewer edges, wlog

⇒ Only need to consider paths of $|V|-1$ edges!

Shortest path properties: 2. Triangle inequality
Theorem. For all $s, u, v \in V$, we have
$$\delta(s, v) \leq \delta(s, u) + w(u, v).$$

Proof. If optimal path p uses (u,v), then $\delta(s, v) = \delta(s, u) + w(u, v)$.
Else: proof by contradiction. If $w(p\rightarrow v) > \delta(s, u) + w(u, v)$, then can make shorter path p' by going through u.

Shortest path properties: 3. Optimal Substructure
Theorem. Any subpath $i\rightarrow j$ of a shortest path $s\rightarrow k$ is a shortest path.

Proof. Cut and paste:

```
\begin{tikzpicture}
    \node[shape=circle,draw=black] (s) at (0,0) {$s$};
    \node[shape=circle,draw=black] (i) at (1,0) {$i$};
    \node[shape=circle,draw=black] (j) at (2,0) {$j$};
    \node[shape=circle,draw=black] (k) at (3,0) {$k$};
    \draw[->, thick] (s) to node [above] {$\delta(s, v)$} (v);
    \draw[->, thick] (v) to node [above] {$\delta(v, u)$} (u);
    \draw[->, thick] (u) to node [above] {$w(u, v)$} (v);
    \draw[->, thick] (s) to node [above] {$\delta(s, u)$} (i);
    \draw[->, thick] (i) to node [above] {$\delta(i, j)$} (j);
    \draw[->, thick] (j) to node [above] {$\delta(j, k)$} (k);
    \end{tikzpicture}
```

If not, make shorter path by $s\rightarrow i\rightarrow j\rightarrow k$
Shortest paths: Problem settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Weights</th>
<th>Greedy/DP</th>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single source</td>
<td>=1</td>
<td>Greedy</td>
<td>BFS</td>
</tr>
<tr>
<td>Single source</td>
<td>≥0</td>
<td>Greedy</td>
<td>Dijkstra</td>
</tr>
<tr>
<td>Single source</td>
<td>General</td>
<td>Dyn. Prog.</td>
<td>Bellman-Ford</td>
</tr>
<tr>
<td>All pairs</td>
<td>General</td>
<td>Dyn. Prog.</td>
<td>MX-mult, Floyd-Warshall, Johnson</td>
</tr>
</tbody>
</table>

Greedy choice property
(only if all weights are \(≥ 0 \))

- Maintain set \(S \) of nodes whose shortest path distances are minimal. At each step, include the vertex \(v \) whose current distance estimate from \(S \) is minimum, through edge \((u,v)\).
- Then edge \((u,v)\) must be part of a shortest path, since any other indirect path to \(v \) must go through a longer-distance intermediate (because path costs never decrease, all \(w \geq 0 \)).

Note: Full proof also shows that our estimates are correct.

Single-source shortest paths
(non-negative edge weights)

Problem. Assume that \(w(u,v) \geq 0 \) for all \((u,v) \in E \). (Hence, all shortest-path weights must exist.) From a given source vertex \(s \in V \), find the shortest-path weights \(\delta(s,v) \) for all \(v \in V \).

Algorithm: Greedy choice.
1. Maintain a set \(S \) of vertices whose shortest-path distances from \(s \) are known.
2. At each step, add to \(S \) the vertex \(v \in V - S \) whose distance estimate from \(s \) is minimum.
3. Update the distance estimates of vertices adjacent to \(v \).

Example of Dijkstra's algorithm

Graph with nonnegative edge weights:

Dijkstra's algorithm

1. \(d[s] \leftarrow 0 \)
2. For each \(v \in V - \{s\} \) do \(d[v] \leftarrow \infty \)
3. \(S \leftarrow \emptyset \)
4. \(Q \leftarrow V \quad \text{(} Q \text{ is a priority queue maintaining } V - S, \text{ keyed on } d[v]\text{)} \)
5. While \(Q \neq \emptyset \) do
 - \(u \leftarrow \text{EXTRACT-MIN}(Q) \)
 - \(S \leftarrow S \cup \{u\} \)
 - For each \(v \in \text{Adj}[u] \) do
 - If \(d[v] > d[u] + w(u,v) \) then \(d[v] \leftarrow d[u] + w(u,v) \)

Implicit DECREASE-KEY
Example of Dijkstra’s algorithm

Initialize:

```
Q: A B C D E
0 ∞ ∞ ∞ ∞

S: {}
```

```
Example of Dijkstra’s algorithm

```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
**Example of Dijkstra’s algorithm**

Relax all edges leaving $E$:

- $Q$: $A$ $B$ $C$ $D$ $E$
  - $S$: $\{A, C, E\}$

“$B$” $\leftarrow$ **Extract-Min**(Q):

- $Q$: $A$ $B$ $C$ $D$ $E$
  - $S$: $\{A, C, E\}$

Relax all edges leaving $B$:

- $Q$: $A$ $B$ $C$ $D$ $E$
  - $S$: $\{A, C, E\}$

“$D$” $\leftarrow$ **Extract-Min**(Q):

- $Q$: $A$ $B$ $C$ $D$ $E$
  - $S$: $\{A, C, E, B\}$

### Correctness proof: Part 1: Upper Bound (Th. 24.11)

**Lemma.** Initializing $d[s] \leftarrow 0$ and $d[v] \leftarrow \infty$ for all $v \in V - \{s\}$ establishes $d[v] \geq \delta(s, v)$ for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps. (Katherine’s Lemma)

**Proof.** Prove invariant $d[v] \geq \delta(s, v)$ for all vertices by induction over number of relaxation steps.

- Base case upon $d[s]=0$ and $d[v]=\infty$ otherwise.
- Inductive step upon relaxation of edge $(u,v)$; by inductive hypothesis $d[x] \geq \delta(s,x)$ for all $x \in V$.

The only $d$ value changing is $d[v]$, and it becomes:

$$d[v] = d[u] + w(u,v) \geq \delta(s,u) + w(u,v)$$

by inductive hypothesis

$$\geq \delta(s,v) \text{ by the triangle inequality}.$$
**Correctness proof: Part 2: Convergence (Th. 24.16)**

**Lemma.** Let \( u \) be \( v \)'s predecessor on a shortest path from \( s \) to \( v \). Then, if \( d[u] = \delta(s, u) \) and edge \((u, v)\) is relaxed, we have \( d[v] = \delta(s, v) \) after the relaxation.

**Proof.** Observe that \( \delta(s, v) = \delta(s, u) + w(u, v) \). Suppose that \( d[v] > \delta(s, v) \) before the relaxation. (Otherwise, we’re done.) Then, the test \( d[v] > d[u] + w(u, v) \) succeeds, because \( d[v] > \delta(s, v) = \delta(s, u) + w(u, v) \), and the algorithm sets \( d[v] = d[u] + w(u, v) = \delta(s, v) \).

**Correctness proof (Th. 24.6): Part 3: Correctness of Dijkstra**

**Theorem.** Dijkstra’s algorithm terminates with \( d[v] = \delta(s, v) \) for all \( v \in V \).

**Proof.** It suffices to show that \( d[v] = \delta(s, v) \) for every \( v \in V \) when \( v \) is added to \( S \). Suppose \( u \) is the first vertex added to \( S \) for which \( d[u] > \delta(s, u) \). Let \( y \) be the first vertex in \( V - S \) along a shortest path from \( s \) to \( u \), and let \( x \) be its predecessor:

\[ S, \text{ just before adding } u. \]

---

**Dijkstra's Runtime analysis**

**Analysis of Dijkstra**

(continued)

\[ \text{Time} = \Theta(V^2)T_{\text{EXTRACT-MIN}} + \Theta(E)T_{\text{DECREASE-KEY}} \]

<table>
<thead>
<tr>
<th>Array</th>
<th>( O(V) )</th>
<th>( O(1) )</th>
<th>( O(V^2) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary heap</td>
<td>( O(\lg V) )</td>
<td>( O(\lg V) )</td>
<td>( O(E \lg V) )</td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>( O(\lg V) )</td>
<td>( O(1) )</td>
<td>( O(E + V \lg V) )</td>
</tr>
</tbody>
</table>

**Note:** Same formula as in the analysis of Prim’s minimum spanning tree algorithm.
Unweighted graphs: BFS

(all edges have positive, unit weights)

$w(u,v) = 1$ for all $(u,v)$

Unweighted graphs

Suppose that $w(u,v) = 1$ for all $(u,v) \in E$. Can Dijkstra’s algorithm be improved?

• Use a simple FIFO queue instead of a priority queue.

**Breadth-first search**

```
while Q ≠ ∅
 do u ← DEQUEUE(Q)
 for each v ∈ Adj[u]
 do if $d[v] = \infty$
 then $d[v] ← d[u] + 1$
 ENQUEUE(Q, v)
```

**Analysis:** Time = $O(V + E)$.

Example of breadth-first search

```
Q: a b d c e
```

```
0 1 1 0 1
1 1 1 1 1
Q: a b d
```

```
0 a d f h
b g i
c e
```

```
0 0
Q: a
```

```
0
Q: a
```

```
0 a d f h
b g i
c e
```

```
0 a d f h
b g i
c e
```

```
0 a d f h
b g i
c e
```

```
0 a d f h
b g i
c e
```

```
0 a d f h
b g i
c e
```

```
0 a d f h
b g i
c e
```

```
0 a d f h
b g i
c e
```

© Leiserson, Demaine, Kellis
Example of breadth-first search

Q: a b d c e

Q: a b d c e

Q: a b d c e g i

Q: a b d c e g i f

Q: a b d c e g i f h
Example of breadth-first search

Q: a b d e g i f h

Correctness of BFS

while Q ≠ ∅
do u ← DEQUEUE(Q)
   for each v ∈ Adj[u]
do if d[v] = ∞
   then d[v] ← d[u] + 1
   ENQUEUE(Q, v)

Key idea:
The FIFO Q in breadth-first search mimics the priority queue Q in Dijkstra.


Shortest paths: Summary

<table>
<thead>
<tr>
<th>Setting</th>
<th>Weights</th>
<th>Gr./DP</th>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single source</td>
<td>=1</td>
<td>Greedy</td>
<td>BFS: O(V+E)</td>
</tr>
<tr>
<td>Single source</td>
<td>≥0</td>
<td>Greedy</td>
<td>Dijkstra: O(E+VlgV)</td>
</tr>
<tr>
<td>Single source</td>
<td></td>
<td></td>
<td>Bellman-Ford</td>
</tr>
<tr>
<td>All pairs</td>
<td></td>
<td></td>
<td>MX-mult, Floyd-Warshall, Johnson</td>
</tr>
</tbody>
</table>