LECTURE 14

Dynamic Programming (DP)

- Revisit our models of computation
- Hallmarks: Greedy vs. DP
- Simple example: Fibonacci
 - Illustrate: overlapping subproblems
 - Ordering the computation: $O(2^n) \rightarrow O(n)$
- Longest common subsequence
 - Recursive formulation & optimal substructure
 - Ordering the computation

Hallmarks of optimization problems

1. Optimal substructure
 - An optimal solution to a problem (instance) contains optimal solutions to subproblems.
2. Overlapping subproblems
 - A recursive solution contains a “small” number of distinct subproblems repeated many times.
3. Greedy choice property
 - Locally optimal choices lead to globally optimal solution
 - Greedy Choice is not possible
 - Globally optimal solution requires trace back through many choices

Overlapping subproblems example: Fibonacci

(not really an optimization problem)

Computing Fibonacci numbers: Top down

- Fibonacci numbers are defined recursively:
 - Python code
    ```python
def fibonacci(n):
    if n==2 or n==1: return 1
    return fibonacci(n-1) + fibonacci(n-2)
```
- Goal: Compute 7th Fibonacci number.
 - $F(2)=1, F(3)=2, F(4)=3, F(5)=5, F(6)=8, F(7)=13$...
 - $1, 2, 3, 5, 8, 13, 21, \ldots$
- Analysis:
 - $T(n) = T(n-1) + T(n-2) + \ldots + T(2) + T(1) \approx O(2^n)$
Computing Fibonacci numbers: Bottom up
• Top-down approach
 – Python code

  ```python
  def fibonacci(n):
      fib_table[1] = 1
      fib_table[2] = 1
      for i in range(3,n+1):
          fib_table[i] = fib_table[i-1]+fib_table[i-2]
      return fib_table[n]
  ```

 Analysis: $T(n) = O(n)$

 ![Fibonacci table](image)

Lessons from iterative Fibonacci algorithm
• What did the iterative solution do?
 – Reveal identical sub-problems
 – Order computation to enable result reuse
 – Systematically filled-in table of results
 – Expressed larger problems from their subparts

 • Ordering of computations matters
 – Naïve top-down approach very slow
 • results of smaller problems not available
 • repeated work
 – Systematic bottom-up approach successful
 • Systematically solve each sub-problem
 • Fill-in table of sub-problem results in order.
 • Look up solutions instead of recomputing

Longest Common Subsequence (LCS)
• Given two sequences $x[1 \ldots m]$ and $y[1 \ldots n]$, find a longest subsequence common to them both.

 ![LCS example](image)

 “a” not “the”

 x: A B C B D A B
 y: B D C A B A

 BCBA = LCS(x, y)

 Functional notation, but not a function

 Three optimal solutions: BCBA, BDAB, BCAB.

 Note: substring (contiguous) vs. subsequence.

Applications of LCS
• Word processing
 – Document comparison
 – Spell-checking
 – Plagiarism detection
• Genomes
 – Sequence alignment
 – Evolutionary analysis
 – Edit distance vs. LCS

Brute-force LCS algorithm
Check every subsequence of $x[1 \ldots m]$ to see if it is also a subsequence of $y[1 \ldots n]$.

Analysis
• Checking = $O(n)$ time per subsequence.
• 2^m subsequences of x (each bit-vector of length m determines a distinct subsequence of x).

Worst-case running time = $O(n2^m) = \text{exponential time.}$
Towards a better algorithm

Simplification:
1. Look at the length of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence \(s \) by \(|s| \).

Strategy: Consider prefixes of \(x \) and \(y \).

• Define \(c[i, j] = |\text{LCS}(x[1 \ldots i], y[1 \ldots j])| \).
• Then, \(c[m, n] = |\text{LCS}(x, y)| \).

Recursive formulation of LCS

\[
\text{LCS}(x, y, i, j) \quad \text{// ignoring base cases}
\]

\[
\begin{align*}
\text{if } x[i] &= y[j] \\
&\quad \text{then } c[i, j] \leftarrow \text{LCS}(x, y, i-1, j-1) + 1 \\
&\quad \text{else } c[i, j] \leftarrow \max \{ \text{LCS}(x, y, i-1, j), \\
&\quad \quad \quad \text{LCS}(x, y, i, j-1) \} \\
\text{return } c[i, j]
\end{align*}
\]

Relies on optimal substructure:
- Construct optimal solution recursively, based on optimal solutions to subproblems.

Dynamic-programming hallmark #1

Optimal substructure

An optimal solution to a problem (instance) contains optimal solutions to subproblems.

If \(z = \text{LCS}(x, y) \), then any prefix of \(z \) is an LCS of a prefix of \(x \) and a prefix of \(y \).

Proof (continued)

Claim: \(z[1 \ldots k–1] = \text{LCS}(x[1 \ldots i–1], y[1 \ldots j–1]) \).

Suppose \(w \) is a longer CS of \(x[1 \ldots i–1] \) and \(y[1 \ldots j–1] \), that is, \(|w| > k–1\). Then, cut and paste: \(w \parallel z[k] \) (\(w \) concatenated with \(z[k] \)) is a common subsequence of \(x[1 \ldots i] \) and \(y[1 \ldots j] \) with \(|w \parallel z[k]| > k\). Contradiction, proving the claim.

Thus, \(c[i–1, j–1] = k–1 \), which implies that \(c[i, j] = c[i–1, j–1] + 1 \).

Other cases are similar. □

Analysis of recursive formulation

\[
\text{LCS}(x, y, i, j) \quad \text{// ignoring base cases}
\]

\[
\begin{align*}
\text{if } x[i] &= y[j] \\
&\quad \text{then } c[i, j] \leftarrow \text{LCS}(x, y, i-1, j-1) + 1 \\
&\quad \text{else } c[i, j] \leftarrow \max \{ \text{LCS}(x, y, i-1, j), \\
&\quad \quad \quad \text{LCS}(x, y, i, j-1) \} \\
\text{return } c[i, j]
\end{align*}
\]

Worse case: \(x[i] \neq y[j] \), in which case the algorithm evaluates two subproblems, each with only one parameter decremented.
Introduction to Algorithms, Lecture 14 4/1/2008

© Leiserson, Kellis

Recursion tree

\[m = 7, n = 6: \]

\[
\begin{array}{c}
\vdots \\
7,6 \\
6,6 \\
6,6 \\
5,6 \\
5,5 \\
5,5 \\
5,5 \\
7,5 \\
7,5 \\
7,5 \\
\vdots \\
\end{array}
\]

Height \(m + n \Rightarrow \) work potentially exponential, but we’re solving the same subproblems repeatedly!

Dynamic-programming hallmark #2

Overlapping subproblems

A recursive solution contains a “small” number of distinct subproblems repeated many times.

The number of distinct LCS subproblems for two strings of lengths \(m \) and \(n \) is only \(mn \).

Avoiding repeated work

- Two solutions are possible
 - **Solution 1: Memoization**
 - Top-down approach, recursive.
 - Store information about partial solutions, and re-use them when they come up.
 - **Solution 2: Dynamic programming**
 - Bottom-up approach, iterative.
 - Order computation s.t. when solving a subproblem, the solutions to all needed subproblems are already available.

Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

\[
\begin{align*}
\text{LCS}(x, y, i, j) & \quad \text{if } c[i, j] = \text{NIL} \\
& \begin{cases}
\text{then if } x[i] = y[j] \\
& \text{then } c[i, j] \leftarrow \text{LCS}(x, y, i-1, j-1) + 1 \\
& \text{else } c[i, j] \leftarrow \max \{ & \text{LCS}(x, y, i-1, j), & \text{LCS}(x, y, i, j-1) \}
\end{cases}
\end{align*}
\]

If already in the table, no work to do.

Otherwise: same as before

Time = \(\Theta(mn) \) = constant work per table entry.

Space = \(\Theta(mn) \).

Representing the subproblem solutions: indexing by \(c[i, j] \)

Parameterization:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Memoization:

Top-down recursive calls, storing intermediate results.

Dyn Prog:

Compute the table bottom-up.

Representing the subproblem solutions: indexing by \(c[i, j] \)

Dyn Prog:

Compute the table bottom-up.

Memoization:

Top-down recursive calls, storing intermediate results.

For LCS, Dyn Prog is clearly superior as all subproblems must be computed.

Time = \(\Theta(mn) \).
Introduction to Algorithms, Lecture 14

Dynamic Programming in Theory

- Hallmarks of Dynamic Programming
 - Optimal substructure: Optimal solution to problem (instance) contains optimal solutions to sub-problems
 - Overlapping subproblems: Limited number of distinct subproblems, repeated many many times
- Typically for optimization problems (unlike Fib example)
 - Optimal choice made locally: max(subsolution score)
 - Score is typically added through the search space
 - Traceback common, find optimal path from indiv. choices
- Middle of the road in range of difficulty
 - Easier: greedy choice possible at each step
 - DynProg: requires a traceback to find that optimal path
 - Harder: no opt. substr., e.g. subproblem dependencies

Dynamic Programming in Practice

- Setting up dynamic programming
 - Find ‘matrix’ parameterization (# dimensions, variables)
 - Example: All-pairs shortest paths: different parameterizations
 - Matrix multiplication: Compute optimal paths of length at most m, using optimal paths of length at most m-1.
 - Floyd-Warshall: Compute optimal paths using vertices {1..k}, using optimal paths using vertices {1..k-1}.
 - Today: Fibonacci=linear. LCS=two-dimensional.
 - Make sure sub-problem space is finite! (not exponential)
 - If not all subproblems are used, better off using memoization
 - If reuse not extensive, perhaps DynProg is not right solution!
 - Traversal order: sub-results ready when you need them
 - Computation order matters! (bottom-up, but not always obvious)
 - Recursion formula: larger problems = F(subparts)
 - Typically F() includes min() or max(): remember choices!
 - Systematically fill in table of results, finding optimal score
 - Trace-back from optimal score \rightarrow optimal solution

Summary

LECTURE 14
Dynamic Programming (DP)
- Revisit our models of computation
- Hallmarks: Greedy vs. DP
- Simple example: Fibonacci
 - Illustrate: overlapping subproblems
 - Ordering the computation: O(2^n) \rightarrow O(n)
- Longest common subsequence
 - Recursive formulation & optimal substructure
 - Ordering the computation

Trace-back to find optimal solution

Previous algo.
only finds score
of optimal soltn.

To find LCS:
• Remember choices
• Reconstruct by
trace back steps.

Space = \Theta(mn).
Exercise:
\Theta(\min\{m, n\}).

Duality: LCS ‘alignment’ \leftrightarrow path through the matrix

Goal: Find best path
through the matrix