Graph Cut

Frédo Durand
MIT - EECS
Last time: Matting

- Separation of foreground & background
- Partial coverage with fractional alpha
- User provides a trimap
- Bayesian approach
 - Model color distribution in F & B
 - Alternatively solve for α, then F&B
 - Solve for each pixel independently
More foreground background

• Today, we want to exploit the coherence of alpha
 – The alpha value of a pixel is likely to be similar to that of its neighbors
 – Unless the neighbors have a very different color
Multiple options

- **Keep using continuous optimization**
 - See e.g. Chuang’s dissertation, Levin et al. 2006
 - Pros: Good treatment of partial coverage
 - Cons: requires the energy/probabilities to be well behaved to be solvable

- **Quantize the values of alpha & use discrete optimization**
 - Pros: allows for flexible energy term, efficient solution
 - Cons: harder to handle fractional alpha
Today’s overview

• Interactive image segmentation using graph cut
• Binary label: foreground vs. background
• User labels some pixels
 – similar to trimap, usually sparser
• Exploit
 – Statistics of known Fg & Bg
 – Smoothness of label
• Turn into discrete graph optimization
 – Graph cut (min cut / max flow)

Images from
European Conference on Computer Vision 2006: “Graph Cuts vs. Level Sets”, Y. Boykov (UWO), D. Cremers (U. of Bonn), V. Kolmogorov (UCL)
• Combination of

• Yuri Boykov, Marie-Pierre Jolly
 Interactive Graph Cuts for Optimal Boundary &
 Region Segmentation of Objects in N-D Images
 In International Conference on Computer Vision

• C. Rother, V. Kolmogorov, A. Blake. GrabCut:
 Interactive Foreground Extraction using Iterated
 Graph Cuts. ACM Transactions on Graphics
 (SIGGRAPH'04), 2004
Cool motivation

- The rectangle is the only user input
- [Rother et al.’s grabcut 2004]
Graph cut is a very general tool

- Stereo depth reconstruction
- Texture synthesis
- Video synthesis
- Image denoising

3D model of scene
Questions?
Energy function

- **Labeling:** one value per pixel, F or B
- **Energy(labeling) = data + smoothness**
 - Very general situation
 - Will be minimized
- **Data:** for each pixel
 - Probability that this color belongs to F (resp. B)
 - Similar in spirit to Bayesian matting
- **Smoothness (aka regularization):** per neighboring pixel pair
 - Penalty for having different label
 - Penalty is downweighted if the two pixel colors are very different
 - Similar in spirit to bilateral filter
Data term

• A.k.a regional term (because integrated over full region)
• \(D(L)=\sum_i -\log h[L_i](C_i) \)
• Where \(i \) is a pixel
 \(L_i \) is the label at \(i \) (F or B),
 \(C_i \) is the pixel value
 \(h[L_i] \) is the histogram of the observed Fg (resp Bg)
• Note the minus sign
Data term

• A.k.a regional term (because integrated over full region)

• \[D(L) = \sum_i -\log h[L_i](C_i) \]

 Where \(i \) is a pixel
 \(L_i \) is the label at \(i \) (F or B),
 \(C_i \) is the pixel value

 \(h[L_i] \) is the histogram of the observed Fg (resp Bg)

• Here we use the histogram while in Bayesian matting we used a Gaussian model. This is partially because discrete optimization has fewer computational constraints. No need for linear least square
Hard constraints

- The user has provided some labels
- The quick and dirty way to include constraints into optimization is to replace the data term by a huge penalty K if not respected.
 - $D(L_i) = 0$ if respected
 - $D(L_i) = K$ if not respected
 - e.g. $K = - \#\text{pixels}$
Smoothness term

• a.k.a boundary term, a.k.a. regularization

\[S(L) = \sum_{\{i, j\} \in N} B(C_i, C_j) \delta(L_i - L_j) \]

• Where \(i, j \) are neighbors
 – e.g. 8-neighborhood
 (but I show 4 for simplicity)

• \(\delta(L_i - L_j) \) is 0 if \(L_i = L_j \), 1 otherwise

• \(B(C_i, C_j) \) is high when \(C_i \) and \(C_j \) are similar, low if there is a discontinuity between those two pixels
 – e.g. \(\exp(-\|C_i - C_j\|^2 / 2\sigma^2) \)
 – where \(\sigma \) can be a constant or the local variance

• Note positive sign
Recap: Energy function

• Labeling: one value L_i per pixel, F or B
• Energy(labeling) = Data + Smoothness
• Data: for each pixel
 – Probability that this color belongs to F (resp. B)
 – Using histogram
 – $D(L) = \sum_i -\log h[L_i](C_i)$
• Smoothness (aka regularization): per neighboring pixel pair
 – Penalty for having different label
 – Penalty is downweighted if the two pixel colors are very different
 – $S(L) = \sum_{\{i, j\} \in N} B(C_i, C_j) \delta(L_i - L_j)$
Optimization

- \(E(L) = D(L) + \lambda \ S(L) \)
- \(\lambda \) is a black-magic constant
- Find the labeling that minimizes \(E \)
- In this case, how many possibilities?
 - \(2^9 \ (512) \)
 - We can try them all!
 - What about megapixel images?
Questions?

• **Recap:**
 – Labeling F or B
 – Energy(Labeling) = Data+Smoothness
 – Need efficient way to find labeling with lowest energy
Labeling as a graph problem

• Each pixel = node
• Add two nodes F & B
• Labeling: link each pixel to either F or B

Desired result
Data term

- Put one edge between each pixel and both F & G
- Weight of edge = minus data term
 - Don’t forget huge weight for hard constraints
 - Careful with sign
Smoothness term

- Add an edge between each neighbor pair
- Weight = smoothness term
Min cut

- Energy optimization equivalent to graph min cut
- Cut: remove edges to disconnect F from B
- Minimum: minimize sum of cut edge weight
Min cut

- Graph with one source & one sink node
- Edge = bridge
- Edge label = cost to cut bridge
- What is the min-cost cut that separates source from sink
Min cut <=> labeling

- In order to be a cut:
 - For each pixel, either the F or G edge has to be cut
- In order to be minimal
 - Only one edge label per pixel can be cut (otherwise could be added)
Min cut \iff optimal labeling

- Energy $= - \sum \text{weight of remaining links to } F \& B$
 $+ \sum \text{weight cut neighbor links}$
Min cut <=> optimal labeling

- Energy = - Σ all weights to F & B
 + Σ weight of cut links to F & B
 + Σ weight cut neighbor links
- Minimized when last 2 terms are minimized
Questions?

• Recap: We have turned our pixel labeling problem into a graph min cut
 – nodes = pixels + 2 labels
 – edges from pixel to label = data term
 – edges between pixels = smoothness

• Now we need to solve the min cut problem
Min cut

- Graph with one source & one sink node
- Edge = bridge; Edge label = cost to cut bridge
- Find the min-cost cut that separates source from sink
 - Turns out it’s easier to see it as a flow problem
 - Hence source and sink
Max flow

- Directed graph with one source & one sink node
- Directed edge = pipe
- Edge label = capacity
- What is the max flow from source to sink?
Max flow

- Graph with one source & one sink node
- Edge = pipe
- Edge label = capacity
- What is the max flow from source to sink?
Max flow

• What is the max flow from source to sink?
• Look at residual graph
 – remove saturated edges (green here)
 – min cut is at boundary between 2 connected components
Max flow

• What is the max flow from source to sink?
• Look at residual graph
 – remove saturated edges (gone here)
 – min cut is at boundary between 2 connected components

![Max flow diagram]
Equivalence of min cut / max flow

The three following statements are equivalent

• The maximum flow is f
• The minimum cut has weight f
• The residual graph for flow f contains no directed path from source to sink
Questions?

• Recap:
 – We have reduced labeling to a graph min cut
 • vertices for pixels and labels
 • edges to labels (data) and neighbors (smoothness)
 – We have reduced min cut to max flow

 – Now how do we solve max flow???
Max flow algorithm

• We will study a strategy where we keep augmenting paths (Ford-Fulkerson, Dinic)
• Keep pushing water along non-saturated paths
 – Use residual graph to find such paths
Max flow algorithm

Set flow to zero everywhere

Big loop

 compute residual graph

 Find path from source to sink in residual
 If path exist add corresponding flow
 Else
 Min cut = \{vertices reachable from source; other vertices\}
 terminate

Animation at
http://www.cse.yorku.ca/~aaw/Wang/MaxFlowStart.htm
Shortest path anyone?

- e.g. Dijkstra, A*
Efficiency concerns

- The search for a shortest path becomes prohibitive for the large graphs generated by images
- For practical vision/image applications, better (yet related) approaches exist

http://www.csd.uwo.ca/faculty/yuri/Abstracts/pami04-abs.html

- Maintain two trees from sink & source.
- Augment tree until they connect
- Add flow for connection
- Can require more iterations because not shortest path
 But each iteration is cheaper because trees are reused
Questions?
Graph Cuts and Efficient N-D Image Segmentation
Yuri Boykov, Gareth Funka-Lea

Figure 8. Segmentation of photographs (early 20th century). Initial segmentation for a given set of hard constraints (seeds) takes less than a second for most 2D images (up to 1000 x 1000). Correcting seeds are incorporated in the blink of an eye. Thus, the speed of our method for photo editing mainly depends on time for placing seeds. An average user will not need much time to enter seeds in (a) and (b).
• Importance of smoothness

From Yuri Boykov, Gareth Funka-Lea
Effect of lambda

(a) Original image
(b) Result for $\lambda = 7 - 43$
(c) Result for $\lambda = 0$
(d) Result for $\lambda = 60$

From Boykov & Jolly
Data (regional) term

(a) Original B&W photo

(b) Segmentation results

(c) Details of segmentation with regional term

(d) Details of segmentation without regional term
Questions?
Grabcut

- Rother et al. 2004
- Less user input: only rectangle
- Handle color
- Extract matte as post-process

Figure 1: Three examples of GrabCut. The user drags a rectangle loosely around an object. The object is then extracted automatically.
Color data term

- Model 3D color histogram with Gaussians
 - Because brute force histogram would be sparse
 - Although I question this. My advice: go brute force, use a volumetric grid in RGB space and blur the histogram
 - Gaussian Mixture Model (GMM)
 - Just means histogram = sum of Gaussians
 - They advise 5 Gaussians
Getting a GMM

• Getting one Gaussian is easy: mean / covariance
• To get K Gaussians, we cluster the data
 – And use mean/covariance of each cluster
• The K-mean clustering algorithm can do this for us
 – Idea: define clusters and their center. Points belong to the cluster with closest center

Take K random samples as seed centers

Iterate:
 For each sample
 Assign to closest cluster
 For each cluster
 Center = mean of samples in cluster
Grabcut: Iterative approach

• Initialize
 – Background with rectangle boundary pixels
 – Foreground with the interior of rectangle

• Iterate until convergence
 – Compute color probabilities (GMM) of each region
 – Perform graphcut segmentation

• Apply matting at boundary

• Potentially, user edits to correct mistakes
Figure 6: **Border matting.** (a) Original image with trimap overlaid. (b) Notation for contour parameterisation and distance map. Contour C (yellow) is obtained from hard segmentation. Each pixel in T_U is assigned values (integer) of contour parameter t and distance r_n from C. Pixels shown share the same value of t. (c) Soft step-function for α-profile g, with centre Δ and width σ.
Figure 5: **User editing.** After the initial user interaction and segmentation (top row), further user edits (fig. 3) are necessary. Marking roughly with a foreground brush (white) and a background brush (red) is sufficient to obtain the desired result (bottom row).
Show Rother’s slides

- From Siggraph 2004
- http://research.microsoft.com/vision/cambridge/i3l/segmentation/GrabCut.htm
Moderately straightforward examples

... GrabCut completes automatically
Difficult Examples

- Camouflage & Low Contrast
- Fine structure
- No telepathy

Initial Rectangle

Initial Result

GrabCut – Interactive Foreground Extraction
Comparison

Boykov and Jolly (2001) vs. GrabCut

User Input

Error Rate: 0.72%

Result

Error Rate: 0.72%
• http://www.csd.uwo.ca/faculty/yuri/Abstracts/eccv06-tutorial.html
• http://www.cse.yorku.ca/~aaw/Wang/MaxFlowStart.htm
• http://research.microsoft.com/vision/cambridge/i3l/segmentation/GrabCut.htm
• http://www.cc.gatech.edu/cpl/projects/graphcuttextures/