Dataflow Analysis

- Compile-Time Reasoning About
- Run-Time Values of Variables or Expressions
- At Different Program Points
 - Which assignment statements produced value of variable at this point?
 - Which variables contain values that are no longer used after this program point?
 - What is the range of possible values of variable at this program point?
Program Representation

• Control Flow Graph
 – Nodes N – statements of program
 – Edges E – flow of control
 • pred(n) = set of all predecessors of n
 • succ(n) = set of all successors of n
 – Start node n_0
 – Set of final nodes N_{final}
Program Points

- One program point before each node
- One program point after each node
- Join point – point with multiple predecessors
- Split point – point with multiple successors
Basic Idea

• Information about program represented using values from algebraic structure called lattice
• Analysis produces lattice value for each program point
• Two flavors of analysis
 – Forward dataflow analysis
 – Backward dataflow analysis
Partial Orders

- Set P
- Partial order \leq such that $\forall x, y, z \in P$
 - $x \leq x$ (reflexive)
 - $x \leq y$ and $y \leq x$ implies $x = y$ (asymmetric)
 - $x \leq y$ and $y \leq z$ implies $x \leq z$ (transitive)
- Can use partial order to define
 - Upper and lower bounds
 - Least upper bound
 - Greatest lower bound
Upper Bounds

If $S \subseteq P$ then

- $x \in P$ is an upper bound of S if $\forall y \in S. \ y \leq x$
- $x \in P$ is the least upper bound of S if
 - x is an upper bound of S, and
 - $x \leq y$ for all upper bounds y of S
- \lor - join, least upper bound, lub, supremum, sup
 - \lor S is the least upper bound of S
 - $x \lor y$ is the least upper bound of $\{x,y\}$
Lower Bounds

• If $S \subseteq P$ then
 - $x \in P$ is a lower bound of S if $\forall y \in S. \ x \leq y$
 - $x \in P$ is the greatest lower bound of S if
 • x is a lower bound of S, and
 • $y \leq x$ for all lower bounds y of S
 - \land - meet, greatest lower bound, glb, infimum, inf
 • $\land S$ is the greatest lower bound of S
 • $x \land y$ is the greatest lower bound of $\{x,y\}$
Covering

- $x < y$ if $x \leq y$ and $x \neq y$
- x is covered by y (y covers x) if
 - $x < y$, and
 - $x \leq z < y$ implies $x = z$
- Conceptually, y covers x if there are no elements between x and y
Example

• \(P = \{000, 001, 010, 011, 100, 101, 110, 111\} \) (standard boolean lattice, also called hypercube)
• \(x \leq y \) if \((x \text{ bitwise and } y) = x\)

Hasse Diagram

• If \(y \) covers \(x \)
• Line from \(y \) to \(x \)
• \(y \) above \(x \) in diagram
Lattices

• If $x \land y$ and $x \lor y$ exist for all $x, y \in P$, then P is a lattice.
• If $\land S$ and $\lor S$ exist for all $S \subseteq P$, then P is a complete lattice.
• All finite lattices are complete
• Example of a lattice that is not complete
 – Integers I
 – For any $x, y \in I$, $x \lor y = \max(x, y)$, $x \land y = \min(x, y)$
 – But $\lor I$ and $\land I$ do not exist
 – $I \cup \{+\infty, -\infty\}$ is a complete lattice
Top and Bottom

• Greatest element of P (if it exists) is top (T)
• Least element of P (if it exists) is bottom (⊥)
Connection Between \leq, \land, and \lor

• The following 3 properties are equivalent:
 - $x \leq y$
 - $x \lor y = y$
 - $x \land y = x$
Lattices as Algebraic Structures

• Have defined \lor and \land in terms of \leq
• Will now define \leq in terms of \lor and \land
 – Start with \lor and \land as arbitrary algebraic operations
 that satisfy associative, commutative, idempotence,
 and absorption laws
 – Will define \leq using \lor and \land
 – Will show that \leq is a partial order
• Intuitive concept of \lor and \land as information
 combination operators (or, and)
Algebraic Properties of Lattices

Assume arbitrary operations \lor and \land such that

- $(x \lor y) \lor z = x \lor (y \lor z)$ (associativity of \lor)
- $(x \land y) \land z = x \land (y \land z)$ (associativity of \land)
- $x \lor y = y \lor x$ (commutativity of \lor)
- $x \land y = y \land x$ (commutativity of \land)
- $x \lor x = x$ (idempotence of \lor)
- $x \land x = x$ (idempotence of \land)
- $x \lor (x \land y) = x$ (absorption of \lor over \land)
- $x \land (x \lor y) = x$ (absorption of \land over \lor)
Connection Between \land and \lor

- $x \lor y = y$ if and only if $x \land y = x$
- Proof of $x \lor y = y$ implies $x = x \land y$
 $x = x \land (x \lor y)$ (by absorption)
 $= x \land y$ (by assumption)
- Proof of $x \land y = x$ implies $y = x \lor y$
 $y = y \lor (y \land x)$ (by absorption)
 $= y \lor (x \land y)$ (by commutativity)
 $= y \lor x$ (by assumption)
 $= x \lor y$ (by commutativity)
Chains

- A set S is a chain if $\forall x, y \in S. \ y \leq x$ or $x \leq y$

- P has no infinite chains if every chain in P is finite
Lattice

• Example: the lattice for the reaching definition problem when there are only 3 definitions

\[T = \{ \{ d1, d2, d3 \} \} \]

\[\perp = \{ \} \]

\[\{ d1, d2 \} \]

\[\{ d1, d3 \} \]

\[\{ d2 \} \]

\[\{ d3 \} \]
Meet and Join Operations

\{ d_1, d_2 \} \land \{ d_2, d_3 \} = ???

\[T = \{ d_1, d_2, d_3 \} \]

\[\perp = \{ \} \]
Meet and Join Operations

\{ d1, d2 \} \land \{ d2, d3 \} = ???
Meet and Join Operations

\[
\{ \text{d1, d2} \} \land \{ \text{d2, d3} \} = ???
\]

\[
T = \{ \text{d1, d2, d3} \}
\]

\[
\perp = \{ \}\n\]
Meet and Join Operations

\[
\{ d1, d2 \} \land \{ d2, d3 \} = \{ d2 \}
\]
Meet and Join Operations

\{ d1, d2 \} \lor \{ d3 \} = ????

T = \{ d1, d2, d3 \}

\bot = \{ \}
Meet and Join Operations

\{ d1, d2 \} \lor \{ d3 \} = ???

T = \{ d1, d2, d3 \}

⊥ = \{ \}

\{ d1 \}

\{ d1, d2 \}

\{ d1, d3 \}

\{ d2 \}

\{ d2, d3 \}

\{ d3 \}
Meet and Join Operations

\[\{ d_1, d_2 \} \lor \{ d_3 \} = ??? \]
Meet and Join Operations

\[\{ d_1, d_2 \} \lor \{ d_3 \} = ??? \]
Meet and Join Operations

\{ d1, d2 \} \lor \{ d3 \} = \{ d1, d2, d3 \}
Application to Dataflow Analysis

- Dataflow information will be lattice values
 - Transfer functions operate on lattice values
 - Solution algorithm will generate increasing sequence of values at each program point
 - Ascending chain condition will ensure termination

- Will use \lor to combine values at control-flow join points
Transfer Functions

- Transfer function \(f: P \rightarrow P \) for each node in control flow graph

- \(f \) models effect of the node on the program information
Transfer Functions

Each dataflow analysis problem has a set F of transfer functions $f: P \rightarrow P$

- Identity function $i \in F$
- F must be closed under composition:
 \[
 \forall f,g \in F. \text{ the function } h = \lambda x. f(g(x)) \in F
 \]
- Each $f \in F$ must be monotone:
 $x \leq y$ implies $f(x) \leq f(y)$
- Sometimes all $f \in F$ are distributive:
 \[
 f(x \lor y) = f(x) \lor f(y)
 \]
- Distributivity implies monotonicity
Putting Pieces Together

- Forward Dataflow Analysis Framework
- Simulates execution of program forward with flow of control
Forward Dataflow Analysis

• Simulates execution of program forward with flow of control
• For each node n, have
 – in_n – value at program point before n
 – out_n – value at program point after n
 – f_n – transfer function for n (given in_n, computes out_n)
• Require that solution satisfy
 – $\forall n. \ out_n = f_n(in_n)$
 – $\forall n \neq n_0. \ in_n = \lor \{ \ out_m . m \ in \ pred(n) \}$
 – $in_{n0} = I$
 – Where I summarizes information at start of program
Dataflow Equations

- Compiler processes program to obtain a set of dataflow equations
 \[\text{out}_n := f_n(\text{in}_n) \]
 \[\text{in}_n := \lor \{ \text{out}_m \cdot m \text{ in } \text{pred}(n) \} \]
- Conceptually separates analysis problem from program
Worklist Algorithm for Solving Forward Dataflow Equations

for each \(n \) do
 \(\text{out}_n := f_n(\bot) \)
\(\text{in}_{n_0} := I; \)
\(\text{out}_{n_0} := f_{n_0}(I) \)
worklist := \(N - \{ n_0 \} \)
while worklist \(\neq \emptyset \) do
 remove a node \(n \) from worklist
 \(\text{in}_n := \lor \{ \text{out}_m . m \text{ in } \text{pred}(n) \} \)
 \(\text{out}_n := f_n(\text{in}_n) \)
 if \(\text{out}_n \) changed then
 worklist := worklist \(\cup \) succ(n)
Correctness Argument

• Why result satisfies dataflow equations

• Whenever process a node \(n \), set \(\text{out}_n := f_n(\text{in}_n) \)
 Algorithm ensures that \(\text{out}_n = f_n(\text{in}_n) \)

• Whenever \(\text{out}_m \) changes, put \(\text{succ}(m) \) on worklist. Consider any node \(n \in \text{succ}(m) \). It will eventually come off worklist and algorithm will set
 \[
 \text{in}_n := \lor \{ \text{out}_m \cdot m \in \text{pred}(n) \}
 \]
 to ensure that \(\text{in}_n = \lor \{ \text{out}_m \cdot m \in \text{pred}(n) \} \)

• So final solution will satisfy dataflow equations
Termination Argument

• Why does algorithm terminate?
• Sequence of values taken on by in_n or out_n is a chain. If values stop increasing, worklist empties and algorithm terminates.
• If lattice has ascending chain property, algorithm terminates
 – Algorithm terminates for finite lattices
 – For lattices without ascending chain property, use widening operator
Widening Operators

- Detect lattice values that may be part of infinitely ascending chain
- Artificially raise value to least upper bound of chain
- Example:
 - Lattice is set of all subsets of integers
 - Could be used to collect possible values taken on by variable during execution of program
 - Widening operator might raise all sets of size n or greater to TOP (likely to be useful for loops)
Reaching Definitions

- $P =$ powerset of set of all definitions in program (all subsets of set of definitions in program)
- $v = \bigcup$ (order is \subseteq)
- $\bot = \emptyset$
- $I = \text{in}_{n_0} = \bot$
- $F =$ all functions f of the form $f(x) = a \cup (x-b)$
 - b is set of definitions that node kills
 - a is set of definitions that node generates
- General pattern for many transfer functions
 - $f(x) = \text{GEN} \cup (x\text{-KILL})$
Lattice

- Example: the lattice for the reaching definition problem when there are only 3 definitions

\[T = \{ \{d1, d2, d3\} \} \]

\[\perp = \{\} \]
Does Reaching Definitions Framework Satisfy Properties?

- \subseteq satisfies conditions for \leq
 - $x \subseteq y$ and $y \subseteq z$ implies $x \subseteq z$ (transitivity)
 - $x \subseteq y$ and $y \subseteq x$ implies $y = x$ (asymmetry)
 - $x \subseteq x$ (idempotence)

- F satisfies transfer function conditions
 - $\lambda x. a \cup (x - b) = \lambda x. x \in F$ (identity)
 - Will show $f(x \cup y) = f(x) \cup f(y)$ (distributivity)

 $f(x) \cup f(y) = (a \cup (x - b)) \cup (a \cup (y - b))$
 $= a \cup (x - b) \cup (y - b) = a \cup ((x \cup y) - b)$
 $= f(x \cup y)$
Does Reaching Definitions Framework Satisfy Properties?

• What about composition?
 – Given \(f_1(x) = a_1 \cup (x-b_1) \) and \(f_2(x) = a_2 \cup (x-b_2) \)
 – Must show \(f_1(f_2(x)) \) can be expressed as \(a \cup (x - b) \)
 \[
 f_1(f_2(x)) = a_1 \cup ((a_2 \cup (x-b_2)) - b_1)
 = a_1 \cup ((a_2 - b_1) \cup ((x-b_2) - b_1))
 = (a_1 \cup (a_2 - b_1)) \cup ((x-b_2) - b_1))
 = (a_1 \cup (a_2 - b_1)) \cup (x-(b_2 \cup b_1))

 – Let \(a = (a_1 \cup (a_2 - b_1)) \) and \(b = b_2 \cup b_1 \)
 – Then \(f_1(f_2(x)) = a \cup (x - b) \)
General Result

All GEN/KILL transfer function frameworks satisfy
- Identity
- Distributivity
- Composition

Properties
Available Expressions

• $P = \text{powerset of set of all expressions in program (all subsets of set of expressions)}$
• $\vee = \cap$ (order is \subseteq)
• $\perp = P$
• $I = \text{in}_{n_0} = \emptyset$
• $F = \text{all functions } f \text{ of the form } f(x) = a \cup (x-b)$
 - b is set of expressions that node kills
 - a is set of expressions that node generates
• Another GEN/KILL analysis
Concept of Conservatism

- Reaching definitions use \cup as join
 - Optimizations must take into account all definitions that reach along ANY path
- Available expressions use \cap as join
 - Optimization requires expression to reach along ALL paths
- Optimizations must conservatively take all possible executions into account. Structure of analysis varies according to way analysis used.
Backward Dataflow Analysis

• Simulates execution of program backward against the flow of control

• For each node n, have
 – in_n – value at program point before n
 – out_n – value at program point after n
 – f_n – transfer function for n (given out_n, computes in_n)

• Require that solution satisfies
 – $\forall n. \ in_n = f_n(out_n)$
 – $\forall n \notin N_{final}. \ out_n = \lor \{ in_m \ . \ m \ in \ succ(n) \}$
 – $\forall n \in N_{final} = out_n = O$
 – Where O summarizes information at end of program
Worklist Algorithm for Solving Backward Dataflow Equations

for each \(n \) do
 \(\text{in}_n := f_n(\bot) \)
for each \(n \in N_{\text{final}} \) do
 \(\text{out}_n := O \)
 \(\text{in}_n := f_n(O) \)
worklist := \(N - N_{\text{final}} \)
while worklist \(\neq \emptyset \) do
 remove a node \(n \) from worklist
 \(\text{out}_n := \lor \{ \text{in}_m . m \in \text{succ}(n) \} \)
 \(\text{in}_n := f_n(\text{out}_n) \)
 if \(\text{in}_n \) changed then
 worklist := worklist \(\cup \) pred(\(n \))
Live Variables

- $P = \text{powerset of set of all variables in program}$
 (all subsets of set of variables in program)
- $\nu = \cup$ (order is \subseteq)
- $\bot = \emptyset$
- $O = \emptyset$
- $F = \text{all functions } f \text{ of the form } f(x) = a \cup (x - b)$
 - b is set of variables that node kills
 - a is set of variables that node reads
Pessimistic vs. Optimistic Analyses

- Available expressions is optimistic (for common sub-expression elimination)
 - Assumes expressions are available at start of analysis
 - Analysis eliminates all that are not available
 - If analysis result $n \leq e$, can use e for CSE
 - Cannot stop analysis early and use current result

- Live variables is pessimistic (for dead code elimination)
 - Assumes all variables are live at start of analysis
 - Analysis finds variables that are dead
 - If $e \leq$ analysis result n, can use e for dead code elimination
 - Can stop analysis early and use current result

- Formal dataflow setup same for both analyses

- Optimism/pessimism depends on intended use
Static Single Assignment (SSA) Form

- Each definition has a unique variable name
 - Original name + a version number

- Each use refers to a definition by name

- What about multiple possible definitions?
 - Add special merge nodes so that there can be only a single definition (Φ functions)
Static Single Assignment (SSA) Form

\[
\begin{align*}
a &= 1 \\
b &= a + 2 \\
c &= a + b \\
a &= a + 1 \\
d &= a + b
\end{align*}
\]
Static Single Assignment (SSA) Form

\[
\begin{align*}
a &= 1 \\
b &= a + 2 \\
c &= a + b \\
a &= a + 1 \\
d &= a + b
\end{align*}
\]

\[
\begin{align*}
a_1 &= 1 \\
b_1 &= a_1 + 2 \\
c_1 &= a_1 + b_1 \\
a_2 &= a_1 + 1 \\
d_1 &= a_2 + b_1
\end{align*}
\]
Static Single Assignment (SSA) Form

\[
\begin{align*}
 a &= 1 \\
 c &= a + 2 \\
 b &= 1 \\
 c &= b + 2 \\
 d &= a + b + c
\end{align*}
\]
Static Single Assignment (SSA) Form

\[a = 1 \]
\[c = a + 2 \]

\[b = 1 \]
\[c = b + 2 \]

\[d = a + b + c \]

\[a_1 = 1 \]
\[c_1 = a_1 + 2 \]

\[b_1 = 1 \]
\[c_2 = b_1 + 2 \]

\[c_3 = \Phi(c_1, c_2) \]
\[d_1 = c_3 + 2 \]
Summary

- Formal dataflow analysis framework
 - Lattices, partial orders
 - Transfer functions, joins and splits
 - Dataflow equations and fixed point solutions