Parallelization

Saman Amarasinghe
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Outline

• Why Parallelism
• Parallel Execution
• Parallelizing Compilers
• Dependence Analysis
• Increasing Parallelization Opportunities
Moore’s Law

From December 1, 1965

- Number of Transistors
- Performance (vs. VAX-11/780)

Uniprocessor Performance (SPECint)

Issues with Parallelism

• Amdhal’s Law
 – Any computation can be analyzed in terms of a portion that must be executed sequentially, T_s, and a portion that can be executed in parallel, T_p. Then for n processors:
 – $T(n) = T_s + \frac{T_p}{n}$
 – $T(\infty) = T_s$, thus maximum speedup $(T_s + T_p) / T_s$

• Load Balancing
 – The work is distributed among processors so that all processors are kept busy when parallel task is executed.

• Granularity
 – The size of the parallel regions between synchronizations or the ratio of computation (useful work) to communication (overhead).
Outline

• Why Parallelism
• Parallel Execution
• Parallelizing Compilers
• Dependence Analysis
• Increasing Parallelization Opportunities
Types of Parallelism

- Instruction Level Parallelism (ILP) → Scheduling and Hardware
- Task Level Parallelism (TLP) → Mainly by hand
- Loop Level Parallelism (LLP) or Data Parallelism → Hand or Compiler Generated
- Pipeline Parallelism → Hardware or Streaming
- Divide and Conquer Parallelism → Recursive functions
Why Loops?

• 90% of the execution time in 10% of the code
 – Mostly in loops

• If parallel, can get good performance
 – Load balancing

• Relatively easy to analyze
Programmer Defined Parallel Loop

- **FORALL**
 - No “loop carried dependences”
 - Fully parallel

- **FORACROSS**
 - Some “loop carried dependences”
Parallel Execution

- **Example**
  ```c
  FORPAR I = 0 to N
  ```

- **Block Distribution: Program gets mapped into**
  ```c
  Iters = ceiling(N/NUMPROC);
  FOR P = 0 to NUMPROC-1
    FOR I = P*Iters to MIN((P+1)*Iters, N)
  ```

- **SPMD (Single Program, Multiple Data) Code**
  ```c
  If(myPid == 0) {
    ...
    Iters = ceiling(N/NUMPROC);
  }
  Barrier();
  FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)
  Barrier();
  ```
Parallel Execution

- **Example**
  ```
  FORPAR I = 0 to N
  ```

- **Block Distribution**: Program gets mapped into
  ```
  Iters = ceiling(N/NUMPROC);
  FOR P = 0 to NUMPROC-1
      FOR I = P*Iters to MIN((P+1)*Iters, N)
  ```

- **Code that fork a function**
  ```
  Iters = ceiling(N/NUMPROC);
  ParallelExecute(func1);
  ...
  void func1(integer myPid)
  {
      FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)
  }
Parallel Execution

• **SPMD**
  - Need to get all the processors execute the control flow
  - Extra synchronization overhead or redundant computation on all processors or both
  - Stack: Private or Shared?

• **Fork**
  - Local variables not visible within the function
    - Either make the variables used/defined in the loop body global or pass and return them as arguments
    - Function call overhead
Outline

• Why Parallelism
• Parallel Execution
• Parallelizing Compilers
• Dependence Analysis
• Increasing Parallelization Opportunities
Parallelizing Compilers

• Finding FORALL Loops out of FOR loops

• Examples

  FOR I = 0 to 5

  FOR I = 0 to 5

  For I = 0 to 5
Iteration Space

- N deep loops $\rightarrow$ n-dimensional discrete cartesian space
  - Normalized loops: assume step size = 1

```
FOR I = 0 to 6
 FOR J = I to 7
```

- Iterations are represented as coordinates in iteration space
  - $\vec{i} = [i_1, i_2, i_3, \ldots, i_n]$
Iteration Space

- N deep loops $\rightarrow$ n-dimensional discrete cartesian space
  - Normalized loops: assume step size = 1

FOR I = 0 to 6
    FOR J = I to 7

• Iterations are represented as coordinates in iteration space
• Sequential execution order of iterations $\Rightarrow$ Lexicographic order
  $[0,0], [0,1], [0,2], ..., [0,6], [0,7],$
  $[1,1], [1,2], ..., [1,6], [1,7],$
  $[2,2], ..., [2,6], [2,7],$
  $...$
  $[6,6], [6,7],$
Iteration Space

- N deep loops $\rightarrow$ n-dimensional discrete cartesian space
  - Normalized loops: assume step size = 1

```
FOR I = 0 to 6
 FOR J = I to 7
```

- Iterations are represented as coordinates in iteration space
- Sequential execution order of iterations $\Rightarrow$ Lexicographic order
- Iteration $\overline{i}$ is lexicographically less than $\overline{j}$, $\overline{i} < \overline{j}$ iff there exists $c$ s.t. $i_1 = j_1$, $i_2 = j_2$, ..., $i_{c-1} = j_{c-1}$ and $i_c < j_c$
Iteration Space

- N deep loops → n-dimensional discrete cartesian space
  - Normalized loops: assume step size = 1

```
FOR I = 0 to 6
 FOR J = I to 7
```

- An affine loop nest
  - Loop bounds are integer linear functions of constants, loop constant variables and outer loop indexes
  - Array accesses are integer linear functions of constants, loop constant variables and loop indexes
Iteration Space

- N deep loops $\rightarrow$ n-dimensional discrete cartesian space
  - Normalized loops: assume step size = 1

```
FOR I = 0 to 6
 FOR J = I to 7
```

- Affine loop nest $\rightarrow$ Iteration space as a set of linear inequalities

\[\begin{align*}
0 & \leq I \\
I & \leq 6 \\
I & \leq J \\
J & \leq 7
\end{align*}\]
Data Space

- M dimensional arrays $\rightarrow$ m-dimensional discrete cartesian space
  - a hypercube

Integer $A(10)$

Float $B(5, 6)$
Dependences

- True dependence
  \[ a = \]
  \[ = a \]

- Anti dependence
  \[ = a \]
  \[ a = \]

- Output dependence
  \[ a = \]
  \[ a = \]

- Definition:
  Data dependence exists for a dynamic instance i and j iff
  - either i or j is a write operation
  - i and j refer to the same variable
  - i executes before j

- How about array accesses within loops?
Outline

- Why Parallelism
- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities
Array Accesses in a loop

\[
\text{FOR } I = 0 \text{ to 5} \\
\]
Array Accesses in a loop

FOR I = 0 to 5
Array Accesses in a loop

FOR $I = 0$ to $5$

Array Accesses in a loop

FOR I = 0 to 5

Iteration Space

Data Space

0 1 2 3 4 5

0 1 2 3 4 5 6 7 8 9 10 11 12
Array Accesses in a loop

FOR I = 0 to 5
Distance Vectors

- A loop has a distance $d$ if there exist a data dependence from iteration $i$ to $j$ and $d = j - i$

```
FOR I = 0 to 5
```

```
FOR I = 0 to 5
```

```
FOR I = 0 to 5
```

```
FOR I = 0 to 5
 A[I] = A[0] + 1
```
FOR $I = 1$ to $n$
FOR $J = 1$ to $n$
Multi-Dimensional Dependence

\[
\text{FOR } I = 1 \text{ to } n \\
\text{FOR } J = 1 \text{ to } n \\
\]

\[
dv = \begin{bmatrix} 0 \\ 1 \end{bmatrix}
\]

\[
\text{FOR } I = 1 \text{ to } n \\
\text{FOR } J = 1 \text{ to } n \\
\]

\[
dv = \begin{bmatrix} 1 \\ 0 \end{bmatrix}
\]
Outline

• Dependence Analysis
• Increasing Parallelization Opportunities
What is the Dependence?

FOR I = 1 to n
    FOR J = 1 to n
What is the Dependence?

FOR I = 1 to n
FOR J = 1 to n
What is the Dependence?

FOR I = 1 to n
    FOR J = 1 to n

\[ dv = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \]
What is the Dependence?

FOR I = 1 to n
    FOR J = 1 to n

FOR I = 1 to n
    FOR J = 1 to n
What is the Dependence?

FOR I = 1 to n
    FOR J = 1 to n

\[ dv = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \]

FOR I = 1 to n
    FOR J = 1 to n
        B[I] = B[I-1] + 1

\[ dv = \begin{bmatrix} 1 \\ -1 \\ -2 \\ -3 \\ \cdots \end{bmatrix} \]
What is the Dependence?

FOR $i = 1$ to $N-1$
  FOR $j = 1$ to $N-1$

$dv = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
Recognizing FORALL Loops

- Find data dependences in loop
  - For every pair of array accesses to the same array
    If the first access has at least one dynamic instance (an iteration)
    in which it refers to a location in the array that the second access
    also refers to in at least one of the later dynamic instances
    (iterations).
    Then there is a data dependence between the statements
  - (Note that same array can refer to itself – output dependences)

- Definition
  - Loop-carried dependence:
    dependence that crosses a loop boundary

- If there are no loop carried dependences $\rightarrow$ parallelizable
Data Dependence Analysis

- I: Distance Vector method
- II: Integer Programming
Distance Vector Method

• The $i^{th}$ loop is parallelizable for all dependence $d = [d_1,...,d_i,...,d_n]$ either
  one of $d_1,...,d_{i-1}$ is $> 0$
  or
  all $d_1,...,d_i = 0$
Is the Loop Parallelizable?

\[
dv = [0] \quad \text{Yes} \quad \begin{array}{c}
\text{FOR } I = 0 \text{ to } 5 \\
\end{array}
\]

\[
dv = [1] \quad \text{No} \quad \begin{array}{c}
\text{FOR } I = 0 \text{ to } 5 \\
\end{array}
\]

\[
dv = [2] \quad \text{No} \quad \begin{array}{c}
\text{FOR } I = 0 \text{ to } 5 \\
\end{array}
\]

\[
dv = [*] \quad \text{No} \quad \begin{array}{c}
\text{FOR } I = 0 \text{ to } 5 \\
A[I] = A[0] + 1
\end{array}
\]
Are the Loops Parallelizable?

FOR $I = 1$ to $n$
FOR $J = 1$ to $n$

$dv = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Yes
No

FOR $I = 1$ to $n$
FOR $J = 1$ to $n$

$dv = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

No
Yes
**Are the Loops Parallelizable?**

FOR $I = 1$ to $n$
    FOR $J = 1$ to $n$

$dv = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

No
Yes

FOR $I = 1$ to $n$
    FOR $J = 1$ to $n$
        $B[I] = B[I-1] + 1$

$dv = \begin{bmatrix} 1 \\ * \end{bmatrix}$

No
Yes
Integer Programming Method

• Example
  
  \[
  \text{FOR } I = 0 \text{ to } 5 \\
  \]

• Is there a loop-carried dependence between \(A[I+1]\) and \(A[I]\)
  
  – Is there two distinct iterations \(i_w\) and \(i_r\) such that \(A[i_w+1]\) is the same location as \(A[i_r]\)
  
  – \(\exists\) integers \(i_w, i_r\) \(0 \leq i_w, i_r \leq 5\) \(i_w \neq i_r\) \(i_w + 1 = i_r\)

• Is there a dependence between \(A[I+1]\) and \(A[I+1]\)
  
  – Is there two distinct iterations \(i_1\) and \(i_2\) such that \(A[i_1+1]\) is the same location as \(A[i_2+1]\)
  
  – \(\exists\) integers \(i_1, i_2\) \(0 \leq i_1, i_2 \leq 5\) \(i_1 \neq i_2\) \(i_1 + 1 = i_2 + 1\)
Integer Programming Method

• Formulation
  
  \[ \exists \text{ an integer vector } \vec{i} \text{ such that } \vec{A} \vec{i} \leq \vec{b} \text{ where} \]
  
  \[ \vec{A} \text{ is an integer matrix and } \vec{b} \text{ is an integer vector} \]

FOR I = 0 to 5

\[ A[I+1] = A[I] + 1 \]
Iteration Space

- **N deep loops** → n-dimensional discrete cartesian space

- **Affine loop nest** → Iteration space as a set of linear inequalities
  
  \[
  0 \leq I \\
  I \leq 6 \\
  I \leq J \\
  J \leq 7
  \]

FOR I = 0 to 5
Integer Programming Method

FOR I = 0 to 5

• Formulation
  - ∃ an integer vector $\bar{i}$ such that $\bar{A} \bar{i} \leq \bar{b}$ where
    $\bar{A}$ is an integer matrix and $\bar{b}$ is an integer vector

• Our problem formulation for $A[i]$ and $A[i+1]$
  - ∃ integers $i_w, i_r$ 0 ≤ $i_w, i_r$ ≤ 5 $i_w \neq i_r$ $i_w + 1 = i_r$
  - $i_w \neq i_r$ is not an affine function
    - divide into 2 problems
    - Problem 1 with $i_w < i_r$ and problem 2 with $i_r < i_w$
    - If either problem has a solution → there exists a dependence
  - How about $i_w + 1 = i_r$
    - Add two inequalities to single problem
      $i_w + 1 \leq i_r$, and $i_r \leq i_w + 1$
Integer Programming Formulation

• Problem 1

0 ≤ \(i_w\)
\(i_w ≤ 5\)
0 ≤ \(i_r\)
\(i_r ≤ 5\)
\(i_w < i_r\)
\(i_w + 1 ≤ i_r\)
\(i_r ≤ i_w + 1\)

FOR I = 0 to 5
Integer Programming Formulation

• Problem 1

\[
0 \leq i_w \quad \Rightarrow \quad -i_w \leq 0
\]
\[
i_w \leq 5 \quad \Rightarrow \quad i_w \leq 5
\]
\[
0 \leq i_r \quad \Rightarrow \quad -i_r \leq 0
\]
\[
i_r \leq 5 \quad \Rightarrow \quad i_r \leq 5
\]
\[
i_w < i_r \quad \Rightarrow \quad i_w - i_r \leq -1
\]
\[
i_w + 1 \leq i_r \quad \Rightarrow \quad i_w - i_r \leq -1
\]
\[
i_r \leq i_w + 1 \quad \Rightarrow \quad -i_w + i_r \leq 1
\]

FOR I = 0 to 5
Integer Programming Formulation

• Problem 1

\[
\begin{align*}
0 \leq i_w & \rightarrow -i_w \leq 0 & -1 & 0 & 0 \\
i_w \leq 5 & \rightarrow i_w \leq 5 & 1 & 0.05 & 0 \\
0 \leq i_r & \rightarrow -i_r \leq 0 & 0 & -1 & 0 \\
i_r \leq 5 & \rightarrow i_r \leq 5 & 0 & 1.5 & 0 \\
i_w < i_r & \rightarrow i_w - i_r \leq -1 & 1 & -1 & -1 \\
i_w + 1 \leq i_r & \rightarrow i_w - i_r \leq -1 & 1-1-1 & 1 & -1 \\
i_r \leq i_w + 1 & \rightarrow -i_w + i_r \leq 1 & -1.1 & 1 & 1
\end{align*}
\]

• and problem 2 with \(i_r < i_w\)
Generalization

• An affine loop nest

\[
\begin{align*}
&\text{FOR } i_1 = f_{l1}(c_1\ldots c_k) \text{ to } I_{u1}(c_1\ldots c_k) \\
&\text{FOR } i_2 = f_{l2}(i_1,c_1\ldots c_k) \text{ to } I_{u2}(i_1,c_1\ldots c_k) \\
&\text{\ldots} \\
&\text{FOR } i_n = f_{ln}(i_1\ldots i_{n-1},c_1\ldots c_k) \text{ to } I_{un}(i_1\ldots i_{n-1},c_1\ldots c_k) \\
&A[f_{a1}(i_1\ldots i_n,c_1\ldots c_k), f_{a2}(i_1\ldots i_n,c_1\ldots c_k), \ldots, f_{am}(i_1\ldots i_n,c_1\ldots c_k)]
\end{align*}
\]

• Solve 2*n problems of the form

• \( i_1 = j_1, \ i_2 = j_2, \ldots, \ i_{n-1} = j_{n-1}, \ i_n < j_n \)
• \( i_1 = j_1, \ i_2 = j_2, \ldots, \ i_{n-1} = j_{n-1}, \ j_n < i_n \)
• \( i_1 = j_1, \ i_2 = j_2, \ldots, \ i_{n-1} < j_{n-1} \)
• \( i_1 = j_1, \ i_2 = j_2, \ldots, \ j_{n-1} < i_{n-1} \)
• \( i_1 = j_1, \ i_2 < j_2 \)
• \( i_1 = j_1, \ j_2 < i_2 \)
• \( i_1 < j_1 \)
• \( j_1 < i_1 \)
Outline

• Why Parallelism
• Parallel Execution
• Parallelizing Compilers
• Dependence Analysis

• Increasing Parallelization Opportunities
Increasing Parallelization Opportunities

- Scalar Privatization
- Reduction Recognition
- Induction Variable Identification
- Array Privatization
- Loop Transformations
- Granularity of Parallelism
- Interprocedural Parallelization
Scalar Privatization

• **Example**

```c
FOR i = 1 to n
 X = A[i] * 3;
 B[i] = X;
```

• Is there a loop carried dependence?
• What is the type of dependence?
Privatization

• Analysis:
  – Any anti- and output-loop-carried dependences

• Eliminate by assigning in local context
  
  ```
 FOR i = 1 to n
 integer Xtmp;
 Xtmp = A[i] * 3;
 B[i] = Xtmp;
  ```

• Eliminate by expanding into an array
  
  ```
 FOR i = 1 to n
 Xtmp[i] = A[i] * 3;
 B[i] = Xtmp[i];
  ```
Privatization

• Need a final assignment to maintain the correct value after the loop nest

• Eliminate by assigning in local context
  
  FOR i = 1 to n
  integer Xtmp;
  Xtmp = A[i] * 3;
  B[i] = Xtmp;
  if(i == n) X = Xtmp

• Eliminate by expanding into an array
  
  FOR i = 1 to n
  Xtmp[i] = A[i] * 3;
  B[i] = Xtmp[i];
  X = Xtmp[n];
Another Example

• How about loop-carried true dependences?

• Example

  \[
  \text{FOR } i = 1 \text{ to } n \\
  X = X + A[i];
  \]

• Is this loop parallelizable?
Reduction Recognition

• Reduction Analysis:
  – Only associative operations
  – The result is never used within the loop

• Transformation

```c
Integer Xtmp[NUMPROC];
Barrier();
FOR i = myPid*Iters to MIN((myPid+1)*Iters, n)
 Xtmp[myPid] = Xtmp[myPid] + A[i];
Barrier();
If(myPid == 0) {
 FOR p = 0 to NUMPROC-1
 X = X + Xtmp[p];
 ...
```
Induction Variables

• Example
  FOR i = 0 to N
    A[i] = 2^i;

• After strength reduction
  t = 1
  FOR i = 0 to N
    A[i] = t;
    t = t*2;

• What happened to loop carried dependences?
• Need to do opposite of this!
  – Perform induction variable analysis
  – Rewrite IVs as a function of the loop variable
Array Privatization

- Similar to scalar privatization

- However, analysis is more complex
  - Array Data Dependence Analysis: Checks if two iterations access the same location
  - Array Data Flow Analysis: Checks if two iterations access the same value

- Transformations
  - Similar to scalar privatization
  - Private copy for each processor or expand with an additional dimension
Loop Transformations

- A loop may not be parallel as is
- Example

```plaintext
FOR i = 1 to N-1
 FOR j = 1 to N-1
```
Loop Transformations

• A loop may not be parallel as is

Example

FOR \( i = 1 \) to \( N-1 \)
    FOR \( j = 1 \) to \( N-1 \)

• After loop Skewing

FOR \( i = 1 \) to \( 2*N-3 \)
    FORPAR \( j = \max(1, i-N+2) \) to \( \min(i, N-1) \)
        \( A[i-j+1,j] = A[i-j+1,j-1] + A[i-j,j]; \)
Granularity of Parallelism

• Example
  
  ```
 FOR i = 1 to N-1
 FOR j = 1 to N-1
  ```

• Gets transformed into
  
  ```
 FOR i = 1 to N-1
 Barrier();
 FOR j = 1+ myPid*Iters to MIN((myPid+1)*Iters, n-1)
 Barrier();
  ```

• Inner loop parallelism can be expensive
  – Startup and teardown overhead of parallel regions
  – Lot of synchronization
  – Can even lead to slowdowns
Granularity of Parallelism

• Inner loop parallelism can be expensive

• Solutions
  – Don’t parallelize if the amount of work within the loop is too small
  or
  – Transform into outer-loop parallelism
Outer Loop Parallelism

- Example
  
  ```
 FOR i = 1 to N-1
 FOR j = 1 to N-1
  ```

- After Loop Transpose
  
  ```
 FOR j = 1 to N-1
 FOR i = 1 to N-1
  ```

- Get mapped into
  
  ```
 Barrier();
 FOR j = 1+ myPid*Iters to MIN((myPid+1)*Iters, n-1)
 FOR i = 1 to N-1
 Barrier();
  ```
Unimodular Transformations

• Interchange, reverse and skew
• Use a matrix transformation
  \[ I_{\text{new}} = A I_{\text{old}} \]

• Interchange
  \[
  \begin{bmatrix}
  i_{\text{new}} \\
  j_{\text{new}}
  \end{bmatrix}
  =
  \begin{bmatrix}
  0 & 1 \\
  1 & 0
  \end{bmatrix}
  \begin{bmatrix}
  i_{\text{old}} \\
  j_{\text{old}}
  \end{bmatrix}
  \]

• Reverse
  \[
  \begin{bmatrix}
  i_{\text{new}} \\
  j_{\text{new}}
  \end{bmatrix}
  =
  \begin{bmatrix}
  -1 & 0 \\
  0 & 1
  \end{bmatrix}
  \begin{bmatrix}
  i_{\text{old}} \\
  j_{\text{old}}
  \end{bmatrix}
  \]

• Skew
  \[
  \begin{bmatrix}
  i_{\text{new}} \\
  j_{\text{new}}
  \end{bmatrix}
  =
  \begin{bmatrix}
  1 & 1 \\
  0 & 1
  \end{bmatrix}
  \begin{bmatrix}
  i_{\text{old}} \\
  j_{\text{old}}
  \end{bmatrix}
  \]
Legality of Transformations

- Unimodular transformation with matrix \( A \) is valid iff. For all dependence vectors \( v \), the first non-zero in \( Av \) is positive.

- Example
  
  ```
 FOR i = 1 to N-1
 FOR j = 1 to N-1
  ```

- Interchange
  
  \[
  dv = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
  \]

- Reverse
  
  \[
  dv = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
  \]

- Skew
  
  \[
  dv = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
  \]
Interprocedural Parallelization

- Function calls will make a loop unparallelizable
  - Reduction of available parallelism
  - A lot of inner-loop parallelism

- Solutions
  - Interprocedural Analysis
  - Inlining
Interprocedural Parallelization

• **Issues**
  – Same function reused many times
  – Analyze a function on each trace  →  Possibly exponential
  – Analyze a function once  →  unrealizable path problem

• **Interprocedural Analysis**
  – Need to update all the analysis
  – Complex analysis
  – Can be expensive

• **Inlining**
  – Works with existing analysis
  – Large code bloat  →  can be very expensive
Summary

• Multicores are here
  – Need parallelism to keep the performance gains
  – Programmer defined or compiler extracted parallelism

• Automatic parallelization of loops with arrays
  – Requires Data Dependence Analysis
  – Iteration space & data space abstraction
  – An integer programming problem

• Many optimizations that’ll increase parallelism