Lecture 22

- Reading: Section 9.1 of the book (but not the sub-section on confidence intervals)

- Outline:
 - Parameter estimation: bias, mean squared error, asymptotic properties
 - Maximum-likelihood estimation

Parameter Estimation
- We have some underlying unknown parameter, θ
- We have n random variables, X_1, X_2, \ldots, X_n (often, but not always, these are i.i.d.)
- Our estimator for θ is a random variable
 \[
 \hat{\Theta} = g(X_1, X_2, \ldots X_n)
 \]
 for some function g
- An example: θ is the probability of heads for some coin. I toss the coin n times: $X_1 \ldots X_n$ are Bernoulli random variables, with $p_{X_i}(1) = \theta$, and $p_{X_i}(0) = 1 - \theta$. A “natural” estimator is
 \[
 \hat{\Theta} = \frac{X_1 + X_2 + \ldots + X_n}{n}
 \]

Examples
- The pollster problem: estimating the proportion of the population that prefers a particular political candidate.
- Medical drug trials: we’d like to estimate the “effectiveness” of a new drug for some disease. “Effectiveness” is defined as the proportion of people with the disease whose condition improves when given the drug.
- Survival analysis: Lightbulbs from a particular manufacturer all have a lifetime that is a random variable with an exponential distribution with the same parameter θ. I take 1000 lightbulbs, and measure the length of time that each lightbulb lasts. How can I estimate θ?
- I’d like to model the gain in price of a particular stock each day as a normal random variable with parameters μ, σ^2. I observe the gain of the stock on each day for 100 days. How can I estimate μ and σ^2?

Two Topics Covered in This Lecture
- What makes a good estimator?
 - How can we compare different estimators?
 - Bias, mean squared error, consistency
- How can we derive estimators?
 - Maximum-likelihood estimation
Bias of an Estimator

- The bias of an estimator is
 \[E[\hat{\Theta}] - \theta \]
 Note: in general \(E[\hat{\Theta}] \) is a function of \(\theta \), so the bias is a function of \(\theta \)

- An estimator is unbiased if for all \(\theta \),
 \[E[\hat{\Theta}] - \theta = 0 \]

An example: \(X_1, \ldots, X_n \) are i.i.d. Bernoulli random variables with parameter \(\theta \). Define our estimator to be
 \[\hat{\Theta} = \frac{X_1 + X_2 + \ldots + X_n}{n} \]
Then \(E[\hat{\Theta}] = n\theta/n = \theta \), hence this estimator is unbiased.

Mean Squared Error of an Estimator

- The mean squared error (MSE) for an estimator is
 \[E[(\hat{\Theta} - \theta)^2] \]

- It is always the case that
 \[E[(\hat{\Theta} - \theta)^2] = \left(E[\hat{\Theta}] - \theta \right)^2 + \text{Var}(\hat{\Theta}) \]
 \[\text{BIAS}^2 + \text{VARIANCE} \]

Mean Squared Error (continued)

\(X_1, \ldots, X_n \) are i.i.d. Bernoulli random variables with parameter \(\theta \).
Define our estimator to be
 \[\hat{\Theta} = \frac{X_1 + X_2 + \ldots + X_n}{n+1} \]
Then \(E[\hat{\Theta}] = n\theta/(n+1) \), hence the bias is \(-\theta/(n+1) \), and this estimator is biased.

Mean Squared Error (continued)

\(X_1, \ldots, X_n \) are i.i.d. Bernoulli random variables with parameter \(\theta \).
Define our estimator to be
 \[\hat{\Theta} = \frac{X_1 + X_2 + \ldots + X_n}{n} \]
This has bias \(= 0 \), and \(\text{Var}(\hat{\Theta}) = \theta(1-\theta)/n \). Hence the MSE is
 \[\frac{\theta(1-\theta)}{n} \]
Alternatively, consider \(\hat{\Theta} = \frac{X_1 + X_2 + \ldots + X_n}{n+1} \).
The bias is \(-\theta/(n+1) \). \(\text{Var}(\hat{\Theta}) = n\theta(1-\theta)/(n+1)^2 \). MSE is
 \[\frac{\theta^2}{(n+1)^2} + \frac{n\theta(1-\theta)}{(n+1)^2} \]
e.g., for \(n = 10 \), \(\theta = 0.1 \), MSE for the first estimator is 0.009,
MSE for the second estimator is 0.0075
Asymptotic Properties

- Often we will consider a sequence of estimators \(\hat{\Theta}_n \) for \(n = 1, 2, \ldots \). For example, define
 \[
 \hat{\Theta}_n = \frac{X_1 + X_2 + \ldots + X_n}{n}
 \]
 where each \(X_i \) is Bernoulli with parameter \(\theta \).
- An estimator is **asymptotically unbiased**, if for all \(\theta \),
 \[
 \lim_{n \to \infty} E[\hat{\Theta}_n] = \theta
 \]
- An estimator is **consistent** if for all \(\theta \), the sequence \(\hat{\Theta}_n \) converges to \(\theta \) in probability.

Maximum-Likelihood Estimators

- We have observations \(X_1, X_2, \ldots, X_n \). We'd like to define an estimator for a parameter \(\theta \). How can we do this?
- A common case: \(X_i \)'s are i.i.d., they have a common PMF \(p_{X_i}(x_i; \theta) \) that depends on \(\theta \). We have observations \(x_1, x_2, \ldots, x_n \). The **maximum-likelihood** estimate is then
 \[
 \hat{\theta} = \text{argmax}_\theta \left(\prod_{i=1}^n p_{X_i}(x_i; \theta) \right)
 \]
- The continuous case: \(X_i \)'s are i.i.d. with PDF \(f_{X_i}(x_i; \theta) \). The **maximum-likelihood** estimate is then
 \[
 \hat{\theta} = \text{argmax}_\theta \left(\prod_{i=1}^n f_{X_i}(x_i; \theta) \right)
 \]

Example 1: Maximum-Likelihood Estimation for Bernoulli R.V.s

- \(X_1 \ldots X_n \) are Bernoulli, \(p_{X_i}(1; \theta) = \theta \), \(p_{X_i}(0; \theta) = 1 - \theta \)
- Observed values are \(x_1, x_2, \ldots, x_n \), the likelihood function is
 \[
 \prod_{i=1}^n p_{X_i}(x_i; \theta) = \theta^s (1 - \theta)^{n-s}
 \]
 where \(s = \sum_{i=1}^n x_i \)
- Maximizing this function with respect to \(\theta \) gives
 \[
 \hat{\theta} = \frac{s}{n} = \frac{\sum_{i=1}^n x_i}{n}
 \]
 Our final estimator is
 \[
 \hat{\Theta} = \frac{\sum_{i=1}^n X_i}{n}
 \]

The Log-Likelihood Function

- The maximum-likelihood estimate is
 \[
 \hat{\theta} = \text{argmax}_\theta \left(\prod_{i=1}^n p_{X_i}(x_i; \theta) \right)
 \]
- Equivalently, we can choose \(\theta \) to maximize the **log-likelihood**:
 \[
 \hat{\theta} = \text{argmax}_\theta \left(\log \prod_{i=1}^n p_{X_i}(x_i; \theta) \right) = \text{argmax}_\theta \left(\sum_{i=1}^n \log p_{X_i}(x_i; \theta) \right)
 \]
 (This can be more convenient in many cases.)
Example 2: the Mean of a Normal Distribution

- $X_1 \ldots X_n$ are i.i.d. with PDF
 \[f_{X_i}(x_i; \theta) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(x_i - \theta)^2}{2\sigma^2}\right) \]
- Given observations x_1, x_2, \ldots, x_n,
 \[\sum_{i=1}^{n} \log f_{X_i}(x_i; \theta) = -n \log \left(\frac{1}{\sqrt{2\pi} \sigma} \right) - \frac{n}{2\sigma^2} \sum_{i=1}^{n} (x_i - \theta)^2 \]
- Maximizing this function w.r.t. θ gives $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} x_i$, hence our estimator is $\hat{\Theta} = \frac{1}{n} \sum_{i=1}^{n} X_i$

This estimator is unbiased, consistent, and has MSE equal to σ^2/n.

Example 3: Uniform Distribution

- X_1, X_2, \ldots, X_n are i.i.d., where $f_{X_i}(x_i; \theta) = \frac{1}{\theta}$ for $0 \leq x_i \leq \theta$, $f_{X_i}(x_i; \theta) = 0$ otherwise.
- Given observations x_1, x_2, \ldots, x_n,
 \[\prod_{i=1}^{n} f_{X_i}(x_i; \theta) = \frac{1}{\theta^n} \]
 if $0 \leq x_i \leq \theta$ for all x_i, otherwise $\prod_{i=1}^{n} f_{X_i}(x_i; \theta) = 0$.
- This function is maximized at $\hat{\theta} = \max_i x_i$, hence the maximum likelihood estimator is $\hat{\Theta} = \max_i X_i$

Example 4: Mean and Variance of a Normal

- $X_1 \ldots X_n$ are i.i.d. with PDF
 \[f_{X_i}(x_i; \theta, \nu) = \frac{1}{\sqrt{2\pi\nu}} \exp\left(-\frac{(x_i - \theta)^2}{2\nu}\right) \]
- Given observations x_1, x_2, \ldots, x_n,
 \[\sum_{i=1}^{n} \log f_{X_i}(x_i; \theta, \nu) = -n \log \left(\frac{1}{\sqrt{2\pi\nu}} \right) - \frac{n}{2\nu} \sum_{i=1}^{n} (x_i - \theta)^2 \]
- Maximizing this function w.r.t. θ, ν gives
 \[\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad \hat{\nu} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\theta})^2 \]

General Properties of Maximum-Likelihood Estimators

- If $X_1 \ldots X_n$ are i.i.d., then under some mild additional assumptions, the maximum-likelihood estimator is consistent.
- Moreover, again under mild conditions, the maximum-likelihood estimator is asymptotically normal, i.e.,
 \[\frac{\hat{\Theta}_n - \theta}{\sigma_n} \]
 approaches a normal distribution with $\mu = 0$, $\sigma^2 = 1$, where $\sigma^2_n = \text{Var}(\hat{\Theta}_n)$.
Maximum-Likelihood Estimators (the General Case)

- We have observations X_1, X_2, \ldots, X_n. We’d like to define an estimator for a parameter θ. How can we do this?

- The general case: assume that the PMF for $X = (X_1, X_2, \ldots, X)$ is $p_X(x_1, \ldots, x_n; \theta)$. Assume that we have observations $x_1 \ldots x_n$. Then the **maximum-likelihood** estimate is

$$\hat{\theta} = \arg\max_{\theta} p_X(x_1, \ldots, x_n; \theta)$$

- The continuous case:

$$\hat{\theta} = \arg\max_{\theta} f_X(x_1, \ldots, x_n; \theta)$$

where $f_X(\cdot; \theta)$ is the PDF parameterized by θ.