Solution 2: Show that the following language is undecidable:

\[L = \{\langle M \rangle : M \text{ is a Turing machine and } M \text{ accepts exactly the strings in } \Sigma^* \text{ whose length is a power of } 2 \}. \]

Assume for contradiction that \(L \) is decidable by a TM \(R \). We construct TM \(S \) to decide \(A_{\text{TM}} \).

\[S = \text{"On input } \langle M, w \rangle \text{:"} \]

1. Construct \(M' \) as described below.
2. Run \(R \) on \(\langle M' \rangle \).
3. If \(R \) accepts then \text{accept}, otherwise \text{reject}."

\(M' = \text{"On input } x \text{:"} \)

1. Run \(M \) on \(w \).
2. If \(M \) accepts \(w \) then check if the length of \(x \) is a power of 2. If it is then \text{accept}, otherwise \text{reject}."

We see that when \(M \) accepts \(w \) then \(R \) will accept \(M' \), otherwise \(R \) will not accept \(M' \). Therefore \(S \) decides \(A_{\text{TM}} \), but we know that \(A_{\text{TM}} \) is undecidable, a contradiction.

By mapping reducibility, we reduce \(A_{\text{TM}} \) to \(L \) (\(A_{\text{TM}} \leq_{m} L \)). By corollary 5.23, because \(A_{\text{TM}} \) is undecidable, \(L \) is undecidable:

\[F = \text{"On input } \langle M, w \rangle \text{:"} \]

1. Construct the following machine
 \(M' = \text{"On input } x \text{:"} \)
 1. Run \(M \) on \(w \).
 2. If \(M \) accepts \(w \) then check if the length of \(x \) is a power of 2.
 If it is then \text{accept}, otherwise \text{reject}."
2. Output \(\langle M' \rangle \"

Solution 3: Show that the following language is undecidable:

\[EQ_{\text{TM}} = \{(M, N) | M \text{ and } N \text{ are TMs such that } L(M) = L(N)\} \]

Reduce from both \(E_{\text{TM}} \) and \(A_{\text{TM}} \). Recall that \(EQ_{\text{DFA}} \) was decidable.

In class we saw how to reduce \(E_{\text{TM}} \) to \(EQ_{\text{TM}} \). Here we will reduce from \(A_{\text{TM}} \) to prove that \(EQ_{\text{TM}} \) is undecidable.

Let \(D \) be a TM that decides \(EQ_{\text{TM}} \). We could then construct a decider \(S \) for \(A_{\text{TM}} \) as follows.

\[S = \text{"On input } \langle M, w \rangle \text{, an encoding of a TM } M \text{ and a string } w, \]

1. Construct TM \(R_1 \) from \(M \) and \(w \) and TM \(R_2 \) as detailed below.

5: Solution Sketches-1
2. Run D on $⟨R_1, R_2⟩$.
3. If D accepts, reject; otherwise, accept.”

R_1 = “On input x,
1. Run M on w.
2. If M accepts, accept”

Notice that R_2 is the TM that we constructed when we proved EQ_{TM} was undecidable by reducing from E_{TM} (i.e., $L(R_1) = ∅$).

R_2 = “On input x,
1. reject.”

Thus, we contrive that $L(R_1) = ∅$ if and only if M rejects w, while $L(R_2) = ∅$ always. Since, by assumption, we have a decider D that tells us if these two machines recognize the same language, we know that if D rejects R_1 and R_2, then this implies that M accepts w.

Solution 4: Give yourself the following test, then check your answers on the back of the handout. Classify each of the following problems as either
- (D) decidable,
- (R) recognizable but not decidable,
- (C) co-recognizable but not decidable, or
- (N) neither recognizable nor co-recognizable,
and indicate which undecidable examples follow from Rice’s Theorem.

1. EQ_{NFA}, the Equivalence problem for NFA’s.
 D; recall the EQ_{DEA} algorithm from textbook.
2. $\{⟨M⟩| M$ is a Turing Machine that runs for at least n steps when started with a blank input tape, where n is the length of the string $⟨M⟩\}$.
 D; just simulate M for up to $|⟨M⟩|$ steps.
3. $\{⟨M⟩| M$ is a Turing Machine that accepts at least two inputs\}.
 R; Undecidable by Rice’s Theorem; Recognizable by running the TM in parallel (i.e., using the dovetailing technique from class) on all input strings until it accepts two strings.
4. $\{⟨M⟩| M$ is a Turing Machine that does not halt on input $⟨M⟩\}$.
 C; Undecidable by diagonalization. Co-recognizable by simulating M on input $⟨M⟩$ and accepting when M halts.
5. $\{⟨M⟩| L(M)$ is regular\}
 N; Undecidable by Rice’s Theorem; Neither recognizable nor co-recognizable from class.
6. EQ_{TM}
 N; Undecidable by Rice’s Theorem; Neither recognizable nor co-recognizable from textbook.

Solution 5: (Mapping Reducibility) Answer the following True or False:

5: Solution Sketches-2
1. A_{TM} is mapping reducible to E_{TM}.
 False; A_{TM} is recognizable, E_{TM} is not. See Corollary 5.23.

2. $A_{TM} \leq \text{m } 0^*1^*$.
 False; 0^*1^* is decidable, A_{TM} is not. See Theorem 5.22.

Solution 6: (Rice’s Theorem and Mapping Reducibility)
Consider the problem of testing whether a Turing machine M accepts any binary string with an odd number of zeros.

1. Formulate this problem as a language; call it $ODDZ$.
 $ODDZ = \{ \langle M \rangle \mid L(M) \cap 1^*01^*(01^*0)^*1^* \neq \emptyset \}$

2. Show that $ODDZ$ is undecidable.
 Use Rice’s Theorem, show hypotheses are satisfied.

 Yes, by running the TM in parallel (i.e., using the dove-tailing technique from class) on all inputs strings with an odd number of zeros until it accepts.

 no, undecidable, but recognizable (if it also were co-recognizable then it would be decidable).