Claim: \(P \) has a match beginning with \([t,b_1^*] \) if \(P' \) has any match.

\[\Rightarrow \] Suppose \(P \) has a match beginning with \([t,b_1^*] \) just minus with \(P' \) tiles, starting with \([*,t,b_1^*] \), ending with \([*,\Box] \).

Get same 2 corresponding strings, but with \(* \) interspersed with \(\Box \) at the end.

\[\Leftarrow \] If \(P' \) has any solution, it must begin with \([*,t,b_1^*] \), since that's the only tile in which top & bottom start with the same symbol.

Other tiles are like \(P' \)'s tiles but with extra \(*'s \).

Then stripping out the \(*'s \) yields a solution to \(P \) beginning with \([t,b_1^*] \).

So, to decide \(MP\text{CP} \) using a decider for \(PC\text{P} \):

Given instance \(P,d \) for \(MP\text{CP} \),

1. Construct instance \(P' \) for \(PC\text{P} \) as above.
2. Ask decider for \(PC\text{P} \) whether \(P' \) has any match.
 - If yes, answer yes for \(P,d \).
 - If not, answer "no".

Since we already know \(MP\text{CP} \) is undecidable, so is \(PC\text{P} \).