Self-reference + The Recursion Theorem

Final topic in computability: self-reference. Consider adding to TMs (or programs) a new, powerful capability to "know" and use their own descriptions.

The Recursion Theorem says that the apparent extra power does not add anything to the basic computability model! These self-referencing machines can be transformed into ordinary non-self-referencing TMs.

Topics:
1. Self-referencing machines/programs.
2. The Recursion Theorem (statement).
3. Applications of RT.
5. Proof of RT - general case.

1. Self-referencing machines/programs

Consider the program:

\[
P_1: \begin{cases}
\text{Output } <P_1> \\
\end{cases}
\]

This simply outputs its own description (encoding) as a string.

Simplest example of a program that uses its own description:

More interesting example:

\[
P_2: \begin{cases}
\text{On input } W \\
\text{if } W = \epsilon \text{ then output } 0 \\
\text{else obtain } <P_2> \\
\text{run } P_2 \text{ on tail}(W) \\
\text{if } P_2 \text{ on tail}(W) \text{ outputs } n \text{ then output } n+1.
\end{cases}
\]
P₂ computes |W|, the length of its input. It uses the recursive style common in Scheme and other recursive progbangs.

We assume that, once we have the encoding of a machine, we can emulate it on a given input.

E.g. if P₂ gets ⟨P₂⟩, it can emulate P₂ on any input (starting over with a new input).

Another example, a bit perplexing:

```
P₃: On input W:
   Obtain ⟨P₃⟩
   Run P₃ on W; if this outputs x₀ then output x₀.
```

A valid self-referencing program.

Sounds contradictory: if P₃ outputs x₀ then P₃ on W outputs x₀?

But note, according to the usual semantics of recursive calls, it never halts, so no contradiction.
2. The Recursion Theorem

Used to justify self-referential programs like P_1, P_2, P_3, by asserting that they have corresponding (equivalent) TMs.

Reursion Theorem: Suppose Theorem 6.3

Let T be a TM that computes a (possibly partial) function

$$T : \Sigma^* \to \Sigma^*.$$

Then there exists another TM R that computes the function

$$\tau : \Sigma^* \to \Sigma^*,$$

where for any w, $\tau(w) = t(\langle R \rangle, w)$.

Thus, T is a TM that takes 2 inputs.

Think of the first input as the description of some arbitrary 1-input TM M:

Then R behaves like T, but with

- the first input fixed to be $\langle R \rangle$,
- the description of R itself:

Ex: P_2, revisited.

Computes length of input.

What are $T + R$?

Here is a version T_2 with a place for an extra input $\langle M \rangle$:
\[
T_2 : \text{ On inputs } <M> \text{ and } W : \\
\begin{align*}
\text{if } W = \epsilon & \text{ then output } 0. \\
\text{else run } M \text{ on } \text{tail}(W) & \text{ if } M \text{ on } \text{tail}(W) \text{ outputs } n \text{ then output } n+1.
\end{align*}
\]

Now, depending on what \(M\) is, \(T_2\) will produce different results.

\(t(<M>, W)\)

\textbf{Ex}: Suppose \(M\) always loops.
Then \(T_2\) on input \(\epsilon\) outputs 0.
\(T_2\) on any other input loops.

\textbf{Ex}: Suppose \(M\) always halts \& outputs 1.
Then\(\begin{align*}
T_2 \text{ on input } \epsilon & \text{ outputs } 0 \\
T_2 \text{ on any other input } & \text{ outputs } 2.
\end{align*}\)

The RT says there is some TM \(R\) computing \(t(<R>, W)\),
that is, the same as \(T_2\) but with the machine
input \(<M>\) set to \(<R>\), for the same machine \(T_2\) \& \(R\).

Plugging \(R\) into \(T_2\) for \(M\), we get \(R = P_2\) as given earlier.
3. Applications of RT
RT can be used to show various negative results, e.g. undecidability.

3.1 A_{TM} is undecidable

We already knew this, but RT provides a new proof:

Suppose D is a TM that decides A_{TM} (for contradiction).

Construct another machine R using self-reference (justified by RT):

\[
R : \text{On input w}
\]
\[
\text{Obtain } <R>. \quad \text{(Using RT)}
\]
\[
\text{Run } D \text{ on input } <R, w> \quad \text{(Assume we can construct for } <R>)
\]
\[
\text{Do the opposite of what } D \text{ does:}
\]
\[
\text{If } D \text{ accepts } <R, w> \text{ then reject.}
\]
\[
\text{If } D \text{ rejects } <R, w> \text{ then accept.}
\]

RT says there exists such a TM R (assuming decision D exists).

(Formally, to apply RT, use the 2-input TM T):

\[
T : \text{On inputs } <M> \text{ and } w:
\]
\[
\text{Run } D \text{ on } <M, w>
\]
\[
\text{Do the opposite ...}
\]

This yields a contradiction:

If R accepts w then D accepts $<R, w>$ since D is a decision
for A_{TM}
then R rejects w by def of R above.

If R does not accept w then D rejects $<R, w>$ since D is a
decider for A_{TM}
then R rejects w by def of R.

Contradiction. So D cannot exist, so A_{TM} is undecidable.
3.2 A01 is undecidable

A similar example.

\[A01 = \{ \langle M \rangle \mid M \text{ accepts } 01 \} \]

Proof:

Suppose D is a TM that decides A01.

Define R:

\[
R : \begin{cases}
\text{On input } W & \text{(ignores input)} \\
\text{Obtain } \langle R \rangle & \text{(using RT)} \\
\text{Run } D \text{ on input } \langle R \rangle. & \\
\text{If } D \text{ accepts then reject} & \\
\text{If } D \text{ rejects then accept} &
\end{cases}
\]

RT says R exists, assuming D exists.

Q: What does R do on input 01?

If R accepts 01 then D accepts \langle R \rangle since D is a decoder for A01

then R rejects 01 (and everything else)

by def. of R.

If R does not accept 01 then D rejects \langle R \rangle since D decides A01

then R accepts 01 by def. of R

Contrad, so D can't exist, so A01 is undecidable.
3.3 Using RT to prove Rice's Theorem

Recall Rice: Let $A_p = \{ < M > | L(M) \text{ satisfies } P \}$ where P is a

nontrivial property of \mathcal{R}-recognizable languages.

(That is, $\exists \text{TM } M_1 \text{ with } L(M) \text{ satisfying } P$
$\exists \text{TM } M_2 \text{ not satisfying } P$.)

Then A_p is undecidable.

We already proved this.

Now, new proof using RT:

Suppose D is a decider for A_p.

Consider TM R:

\[
R: \text{on input } W: \quad \begin{cases}
\text{Obtain } < R >. \quad \text{(using RT)} \\
\text{Run } D \text{ on input } < R >. \quad \text{If} \ \text{D accepts } < R > \text{ then run } M_2 \text{ on input } W + \text{ do the same thing.} \\
\text{If} \ \text{D rejects } < R > \text{ then run } M_1. \quad \ldots \quad \text{(M_1 + M_2 are as above, in nontriviality def.)}
\end{cases}
\]

R exists, by RT.

Get contradiction by considering whether $L(R)$ satisfies P:

If $L(R)$ satisfies P,

- then D accepts $< R >$ since D decides A_p
- then $L(R) = L(M_2)$ by def. of R
- then $L(R)$ doesn't satisfy P.

If $L(R)$ doesn't satisfy P,

- then D rejects $< R >$ since D decides A_p
- then $L(R) = L(M_1)$
- then $L(R)$ satisfies P

Contradiction!
A non-T-recognizability result

Define \(\text{MIN}_{TM} = \{ <M> | M \text{ is a "minimal" } TM, \text{ that is, no } TM \text{ with a shorter encoding recognizes the same language} \} \)

Theorem: \(\text{MIN}_{TM} \) is not T-recognizable.

Note: This doesn't follow from Rice:
1. Requires "not T-recognizable" rather than "undecidable".
2. Not a language property.

Proof: Assume \(\text{MIN}_{TM} \) is T-recognizable.

Then it's enumerable, say by enumerator TM \(E \).

Consider TM \(R \):

- On input \(W \):
 - Obtain \(<R> \) (using \(RT \))
 - Run \(E \), producing list \(<M_1>, <M_2>, \ldots \) of all minimal TMs
 - Until you find some \(<M_c> \) with \(|<M_c>| > |<R>| \)
 (That is, until you find a machine with a representation bigger than yours.
 Then run \(M_c(w) \) and do the same thing.

To get contradiction:

\[L(R) = L(M_c) \]

\(|<R>| < |<M_c>| \)

Therefore, \(<M_c> \) should not be in \(\text{MIN}_{TM} \), since \(\text{MIN}_{TM} \) contains only minimal TMs.

Contradiction.
4) Proof of RT—special case

Start with easier first step: Produce a TM corresponding to P_1:

\[
\begin{align*}
\left[P_1 : & \text{ Obtain } < P_1 > \\
& \text{ Output } < P_1 > \\
\right]
\]

P_1 prints its own description.

Lemma: (Sipser 6.1)

There is a computable function $q : \Sigma^* \rightarrow \Sigma^*$ such that for any string w, $q(w)$ is the description of a TM P_w that just prints out w and halts.

\[
\begin{array}{c}
w \\
\downarrow \\
Q \\
\downarrow < P_w > \\
\end{array}
\]

P_w has no input; just prints w.

Proof: Straightforward construction. Can hard-wire w in the FSC of P_w.

Now, the machine that outputs its own description.

Consists of 2 sub-machines, called A and B.

Output of A feeds into B

Write as $A \circ B$.

\[
A \xrightarrow{} B
\]
Construction of \(B \):

\[
\langle M \rangle \xrightarrow{B} \langle \langle P_{\langle M \rangle} \circ M \rangle \rangle
\]

B expects its input to be the representation of a 1-input \(TM \) (this \(M \) is a function-computer \(TM \), not a language recognizer).

If not, we don’t care what \(B \) does.

\(B \) generates (outputs) the encoding of the combination of two machines, \(P_{\langle M \rangle} \circ M \)

\[
\langle P_{\langle M \rangle} \rangle \xrightarrow{\langle M \rangle} M \xrightarrow{\text{some output}}
\]

The first is the machine \(P_{\langle M \rangle} \) which simply outputs \(\langle M \rangle \).

The second is \(M \) itself, again.

\text{Now:\quad} \begin{align*}
\text{B could generate a description of } \langle P_{\langle M \rangle} \rangle \langle P_{\langle M \rangle} \rangle, \text{ by} \\
\text{Lemma 6.1}.
\end{align*}

\begin{align*}
\text{B could generate a description of } \langle M \rangle \langle M \rangle, \text{ since it already} \\
\text{has } \langle M \rangle \text{ from its input.}
\end{align*}

\begin{align*}
\text{Once B has descriptions of } \langle P_{\langle M \rangle} \rangle \circ M, \text{ it could combine them} \\
\text{into a single description of the combined machine } P_{\langle M \rangle} \circ M,
\end{align*}

\text{which is } \langle P_{\langle M \rangle} \circ M \rangle.

Construction of \(A \):

\[
\text{Easy:\quad } \xrightarrow{A} \langle B \rangle
\]

\(A \) is just \(P_{\langle B \rangle} \), the machine that just outputs \(\langle B \rangle \), where \(B \) is the complicated machine constructed above.
5 Proof of general RT

So we have a machine that outputs its own description.

A curiosity - not the general RT that we need.

RT says not just: \(\exists \text{TM that outputs its own description}, \)
but: \(\exists \text{TMs that can use their own descriptions,} \)
in "arbitrary ways".

The "arbitrary ways" are captured by the \(T \) in the RT statement:

Recall \(\langle M \rangle \downarrow \downarrow w \)

\[T \]

\[t (\langle M \rangle, w) \]

Review RT statement

We must construct \(R \):

\[R \]

\[t (\langle R \rangle, w) \]

Construct \(R \) from \{ the given \(T \), and \}
\{ versions of \(A \) \& \(B \) from the special-case proof. \}

\(R \) will look like:

Numbers indicate which input it is, counting bottom-up.

Write this as \(A \odot (B \odot T) \) (not a complete notation system - just a convenience here)
New A: \(P \langle \text{BOT} \rangle \), where \(\text{BOT} \) means

\[\begin{array}{c}
\text{B} \\
\text{T}
\end{array} \]

New B:

\[\begin{array}{c}
\langle M \rangle \\
\text{B} \\
\langle P \langle M \rangle \rangle \\
\text{M}
\end{array} \]

\(M \) is a 2-input 1-output TM, as is \(\text{BOT} \).

This is:

\[\begin{array}{c}
\langle M \rangle \\
\text{M}
\end{array} \]

a 1-input TM, which uses output of \(P \langle M \rangle \) as first input of \(M \).

Combine \(A, B, T \) as above:

\[\begin{array}{c}
A \\
\text{B} \\
\text{T}
\end{array} \]

Trace:

\[\begin{array}{c}
A = \langle P \langle \text{BOT} \rangle \rangle \\
\text{B} \\
\langle P \langle \text{BOT} \rangle \rangle \circ \langle \text{BOT} \rangle \\
\text{T}
\end{array} \]

Plug in \(\text{BOT} \) for \(M \) in \(B \) definition.

This = \(\langle A \circ \langle \text{BOT} \rangle \rangle \), which is just \(\langle R \rangle \).

Plug in \(P \langle \text{BOT} \rangle \circ \langle \text{BOT} \rangle \) for \(M \) in \(T \) definition.

This = \(T \langle \langle R \rangle, w \rangle \).

Thus, the entire system \(A \circ \langle \text{BOT} \rangle = R \) on input \(w \), produces \(T \langle \langle R \rangle, w \rangle \), as needed.