6.342 Lecture 3 — February 17, 2009

Today:
• More on bases, matrix-vector representations and projection
• Sequences and discrete-time signals

Recall: Homework #1 is due tomorrow at beginning of lecture

Project assignment posted
• Several deliverables: Proposal, talk, report
• Discussions with staff are encouraged, and one meeting is mandatory

Recall: Inner product linear in first arg, conjugate-linear in second arg

Readings:
• Chapters 2-3 of The World of Fourier and Wavelets
 – Chapter 2 already posted, with many obvious flaws
 – Chapter 3 will be covered only very lightly in lecture

Matrix representations of vectors

\[x = \sum_{k \in \mathbb{Z}} \alpha_k \varphi_k \quad \quad \quad y = \sum_{k \in \mathbb{Z}} \beta_k \varphi_k \]

\[\langle x, y \rangle = \langle \sum_{k \in \mathbb{Z}} \alpha_k \varphi_k, \sum_{i \in \mathbb{Z}} \beta_k \varphi_i \rangle = \sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{Z}} \alpha_k \beta_i^* \langle \varphi_k, \varphi_i \rangle = \beta^* G \alpha \]

\[G = \begin{bmatrix}
 \langle \varphi_{-1}, \varphi_{-1} \rangle & \langle \varphi_{0}, \varphi_{1} \rangle & \langle \varphi_{1}, \varphi_{-1} \rangle & \cdots \\
 \langle \varphi_{-1}, \varphi_{0} \rangle & \langle \varphi_{0}, \varphi_{0} \rangle & \langle \varphi_{1}, \varphi_{0} \rangle & \cdots \\
 \langle \varphi_{-1}, \varphi_{1} \rangle & \langle \varphi_{0}, \varphi_{1} \rangle & \langle \varphi_{1}, \varphi_{1} \rangle & \cdots \\
 \cdots & \cdots & \cdots & \ddots
\end{bmatrix} \]
Matrix representations of linear operators

\[
\beta_k = \left\langle A \left(\sum_{i \in \mathbb{Z}} \alpha_i \varphi_i \right), \tilde{\psi}_k \right\rangle \equiv \left\langle \left(\sum_{i \in \mathbb{Z}} \alpha_i A \varphi_i \right), \tilde{\psi}_k \right\rangle \equiv \sum_{i \in \mathbb{Z}} \alpha_i \left\langle A \varphi_i, \tilde{\psi}_k \right\rangle
\]

\[
\begin{bmatrix}
\vdots \\
\beta_{-1} \\
\beta_0 \\
\beta_1 \\
\vdots
\end{bmatrix} =
\begin{bmatrix}
\vdots \\
\left\langle A \varphi_{-1}, \tilde{\psi}_{-1} \right\rangle \\
\left\langle A \varphi_0, \tilde{\psi}_0 \right\rangle \\
\left\langle A \varphi_1, \tilde{\psi}_1 \right\rangle \\
\vdots
\end{bmatrix}
\begin{bmatrix}
\vdots \\
\alpha_{-1} \\
\alpha_0 \\
\alpha_1 \\
\vdots
\end{bmatrix}
\]

Last time

Definition 1.19 (Projection operator). An operator \(P \) is called idempotent if \(P^2 = P \). A linear operator that is idempotent is a projection operator.

Definition 1.20 (Orthogonal projection operator). A projection operator that is self-adjoint is an orthogonal projection operator.

Theorem 1.1 (Projection theorem [42]). Let \(W \) be a closed subspace of the Hilbert space \(H \). Corresponding to any vector \(x \in H \), there exists a unique vector \(w_0 \in W \) such that \(\| x - w_0 \| \leq \| x - w \| \) for all \(w \in W \). A necessary and sufficient condition for \(w_0 \) to be the unique minimizing vector is that \(x - w_0 \perp W \). The operator \(P_W \) mapping \(x \) into \(w_0 \) is an orthogonal projection operator.
Projection using bases

Let \(\{\varphi_k\}_{k \in I} \) be a basis for subspace \(V \) of Hilbert space \(H \). How can we represent the projection onto \(V \)?

Biorthogonal expansion/reconstruction

Let \(H \) be a Hilbert space.
Let \(\{\varphi_k\} \subset H \) be a linearly independent set.
Let \(\{\tilde{\varphi}_k\} \subset H \) be a set biorthogonal to \(\{\varphi_k\} \):

\[
\langle \tilde{\varphi}_i, \varphi_j \rangle = \delta_{i-j}
\]

Then

- \(\{\tilde{\varphi}_k\} \) is a linearly independent set
- \(x = \sum_k \langle x, \tilde{\varphi}_k \rangle \varphi_k \) for all \(x \in \text{span}(\{\varphi_k\}) \) with uniqueness of coefficients
- \(x = \sum_k \langle x, \varphi_k \rangle \tilde{\varphi}_k \) for all \(x \in \text{span}(\{\tilde{\varphi}_k\}) \) with uniqueness of coefficients
Biorthogonal expansion/reconstruction

Let \(\{ \varphi_k \} \subset H \) be linearly independent, \(\{ \tilde{\varphi}_k \} \) and \(\{ \varphi_k \} \) biorthogonal, \(V = \text{span}(\{\varphi_k\}) \).

\(x \in H \) can be written uniquely as

\[
x = x_{V\perp} + \sum_k \langle x, \tilde{\varphi}_k \rangle \varphi_k, \quad \langle x_{V\perp}, \varphi_i \rangle = 0 \quad \forall \ i
\]

Having \(\tilde{\varphi}_k \in V \) for all \(k \) is special: Then

\(\hat{x} = \sum_k \langle x, \tilde{\varphi}_k \rangle \varphi_k \) is the orthogonal projection of \(x \) onto \(V \), i.e., \(\|x - \hat{x}\| \) is minimum.

Discrete time

We now work (almost) entirely in \(\ell^2(\mathbb{Z}) \):

- finite-energy sequences on \(\mathbb{Z} \)
- \(\mathbb{Z} \) is ordered!

Linear operators \(\ell^2(\mathbb{Z}) \rightarrow \ell^2(\mathbb{Z}) \) called "discrete-time systems"

\[
x_n \rightarrow \begin{bmatrix} A \end{bmatrix} \rightarrow y_n
\]

Matrix representations of operators

Time invariance
Basic discrete-time signals

discrete impulse $\delta_n = \begin{cases} 1, & \text{for } n = 0; \\ 0, & \text{otherwise} \end{cases}$

previously called e_0; shift to get e_k
(Kronecker? Dirac?)

unit step (or Heaviside) $u_n = \begin{cases} 1, & \text{for } n \geq 0; \\ 0, & \text{otherwise} \end{cases}$

(discrete) sinc $\text{sinc}_{T,n} = \begin{cases} \frac{\sin(n\pi/T)}{n\pi/T}, & \text{for } n \neq 0; \\ 1, & \text{for } n = 0 \end{cases}$

Deterministic correlation

Autocorrelation Given a sequence x, its autocorrelation a^{11} is given by

$$a_n = \sum_{k \in \mathbb{Z}} x_k x_{k+n} = \langle x_k, x_{k+n} \rangle_k.$$ \hspace{1cm} (2.16)

The autocorrelation measures the similarity of a sequence with respect to shifts of itself. Note that $a_0 = \sum_k |x_k|^2 = \|x\|_2^2$, and $a_{-n} = a_{n}$.

Crosscorrelation Given two sequences x and y, their crosscorrelation c is given by

$$c_n = \sum_{k \in \mathbb{Z}} x_k y_{k+n} = \langle x_k, y_{k+n} \rangle_k.$$ \hspace{1cm} (2.17)

\hspace{1cm} \text{11}This is the deterministic autocorrelation of a sequence. The stochastic case will be seen later.
Basic systems

Shift The shift-by-\(k \) operator is defined as:

\[
y_n = T x = x_{n-k},
\]

\[
[\ldots \ x_{-1} \ x_0 \ x_1 \ \ldots] \rightarrow [\ldots \ x_{k-1} \ x_k \ x_{k+1} \ \ldots].
\]

which simply delays \(x \) by \(k \) samples. While this is one of the simplest discrete-time systems, it is also the most important, as the whole concept of time processing is based on this simple operator. The shift-by-one is usually termed a *delay*.

Accumulator The output of the accumulator is the “integral” of the input:

\[
y_n = T x = \sum_{k=-\infty}^{n} x_k.
\]

Basic system properties

Definition 2.2 (memoryless system). A system \(y = T_n x \) is memoryless, if its output \(y_n \) at time \(n \) depends only on the input \(x_n \) at time \(n \):

\[
y_n = T x_n.
\]

Definition 2.3 (shift-invariant system). Given an input \(x_n \) and an output \(y_n \), a system is shift invariant if a shifted input produces a shifted output:

\[
y_n = T x_n \quad \Rightarrow \quad y_{n-k} = T x_{n-k}.
\]

Definition 2.4 (causal system). A causal system is a system whose output at time \(n \) depends only on the present and past inputs:

\[
y_n = T_n x_k, \quad k \leq n.
\]

Definition 2.5 (BIBO stability). A system is BIBO stable if, for every bounded input \(x \in \ell^\infty(\mathbb{Z}) \), the output \(y = T_n x \) is bounded as well:

\[
x \in \ell^\infty(\mathbb{Z}) \quad \Rightarrow \quad y \in \ell^\infty(\mathbb{Z}).
\]
Impulse response and convolution

Discrete-time Fourier transform

Definition 2.6 (Discrete-time Fourier transform). Given an infinite-length sequence \(x_n \), its discrete-time Fourier transform is given by

\[
X(e^{j\omega}) = \langle x, v_{\omega} \rangle = \sum_{n \in \mathbb{Z}} x_n e^{-j\omega n}, \quad \omega \in \mathbb{R}.
\]

The inverse discrete-time Fourier transform is given by

\[
x_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} \langle x, v_{\omega} \rangle v_{\omega} d\omega = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega, \quad n \in \mathbb{Z}.
\]

To denote such a discrete-time Fourier transform pair, we write:

\[
x_n \xrightarrow{\text{DFT}} X(e^{j\omega}).
\]

The discrete-time Fourier transform \(X(e^{j\omega}) \) is a \(2\pi \)-periodic function called the *spectrum* of the sequence \(x \).
DTFT properties Table

<table>
<thead>
<tr>
<th>Basic properties</th>
<th>Time domain</th>
<th>DTFT domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linearly</td>
<td>αxₙ + βyₙ</td>
<td>αX(ω) + βY(ω)</td>
</tr>
<tr>
<td>Shift in time</td>
<td>xₙ₋ₙ₀</td>
<td>e⁻ʲ2πωn₀ X(eʲω)</td>
</tr>
<tr>
<td>Shift in frequency</td>
<td>eʲ2πω₀ xₙ</td>
<td>X(e⁻ʲ2πω₀)</td>
</tr>
<tr>
<td>Time reversal</td>
<td>x₋ₙ</td>
<td>X*(e⁻ʲω)</td>
</tr>
<tr>
<td>Differentiation</td>
<td>nxₙ</td>
<td>j²X(e⁻ʲω)</td>
</tr>
<tr>
<td>Convolution in time</td>
<td>hₙ xₙ</td>
<td>H(e⁻ʲω) X(e⁻ʲω)</td>
</tr>
<tr>
<td>Convolution in frequency</td>
<td>hₙ xₙ</td>
<td>1/2 H * X</td>
</tr>
<tr>
<td>Autocorrelation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crosscorrelation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parseval's equality</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetries

- Conjugate \(x \):
 \(x^* \):
 \(X^*(e⁻ʲω) \)
- Conjugate, time-reversed \(x \):
 \(x^*₋ₙ \):
 \(X^*(e⁻ʲω) \)
- Real part of \(x \):
 \(R(xₙ) \):
 \((X(e⁻ʲω) + X^*(e⁻ʲω))/2 \)
- Imaginary part of \(x \):
 \(jΩ(xₙ) \):
 \((X(e⁻ʲω) - X^*(e⁻ʲω))/2 \)
- Conjugate-symmetric part of \(x \):
 \((xₙ + x^*₋ₙ)/2 \):
 \(R(X(e⁻ʲω)) \)
- Conjugate-antisymmetric part of \(x \):
 \((xₙ - x^*₋ₙ)/2 \):
 \(jΩ(X(e⁻ʲω)) \)

Symmetries for real \(x \)

- \(X \) is conjugate symmetric:
 \(X(e⁻ʲω) = X^*(e⁻ʲω) \)
- Real part of \(X \) is even:
 \(R(X(e⁻ʲω)) = R(X(e⁻ʲ3ω)) \)
- Imaginary part of \(X \) is odd:
 \(Ω(X(e⁻ʲω)) = -Ω(X(e⁻ʲ3ω)) \)
- Magnitude of \(X \) is even:
 \(|X(e⁻ʲω)| = |X(e⁻ʲ3ω)| \)
- Phase of \(X \) is odd:
 \(\arg(X(e⁻ʲω)) = -\arg(X(e⁻ʲ3ω)) \)