6.342 Lecture 17 — April 15, 2009

Today:
• Scheduling project presentations
• Frames (cont.)

Readings:
• Chapter 9 [in most recent numbering] of The World of Fourier and Wavelets
• O. Christensen, An Introduction to Frames and Riesz Bases, 2002.

Project presentations

<table>
<thead>
<tr>
<th>Day</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>May 6</td>
<td>11:05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11:30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11:55</td>
</tr>
<tr>
<td>M</td>
<td>May 11</td>
<td>11:05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11:30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11:55</td>
</tr>
<tr>
<td>W</td>
<td>May 13</td>
<td>11:05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11:30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11:55</td>
</tr>
</tbody>
</table>

Project written report due **11:59pm EDT, Wednesday, May 13**
Frames – outline

- Motivation for sets larger than bases
- Definitions
- Linear analysis and linear synthesis
 - Many solutions give “perfect reconstruction”
 - Projection property from pair of canonical dual frames
- Linear analysis and general synthesis
 - Robustness to additive noise, quantization, erasure
- Fourier frames
- Wavelet frames
- General analysis for linear synthesis
 - Intractability of optimal approximation
 - Greedy algorithm: Matching pursuit
 - Convex relaxation: Basis pursuit

Definitions (and alternatives)

Frame: Set \{\varphi_i\}_{i \in I} s.t. for some \(A > 0\) and \(B < \infty\)

\[A\|x\|^2 \leq \sum_{i \in I} |\langle x, \varphi_i \rangle|^2 \leq B\|x\|^2 \quad \text{for all } x \in H \]

Lower frame bound: Any \(A\) above (best \(A\) above)

Upper frame bound: Any \(B\) above (best \(B\) above)

Tight frame: Frame where one can take \(A = B\)

Unit-norm frame: Frame where \(\|\varphi_i\| = 1\) for all \(i \in I\)
(sometimes called “normalized” or “uniform”)

Parseval tight frame: Frame where one can take \(A = B = 1\) (sometimes called “normalized”)

Lecture 17
Definitions (and alternatives)

Frame operator: F maps x to $\{\langle x, \varphi_i \rangle \}_{i \in I}$

(however, “frame operator” could mean F^*F)

Dual frame: Any set $\{\tilde{\varphi}_i\}_{i \in I}$ s.t.

$$x = \sum_{i \in I} \langle x, \tilde{\varphi}_i \rangle \varphi_i \quad \text{for all } x \in H$$

Canonical dual frame: $\{\tilde{\varphi}_i\}_{i \in I}$ where $\tilde{\varphi}_i = (F^*F)^{-1}\varphi_i$

(however, this could be called simply “the dual frame”)

Canonical dual of tight frame very simple: $\tilde{\varphi}_i = (1/A)\varphi_i$

$$x = \frac{1}{A} \sum_{i \in I} \langle x, \varphi_i \rangle \varphi_i \quad \text{for all } x \in H \text{ (with “best A”)}$$

Robustness to additive noise

$$\hat{x} = F^\dagger \hat{y} = F^\dagger (Fx + \eta) = \hat{F}^* (Fx + \eta) = \sum_{k=1}^M \langle x, \varphi_k \rangle \tilde{\varphi}_k,$$

$$x - \hat{x} = \sum_{k=1}^M \langle x, \varphi_k \rangle \tilde{\varphi}_k - \sum_{k=1}^M \langle x, \varphi_k \rangle \tilde{\varphi}_k = - \sum_{k=1}^M \eta_k \tilde{\varphi}_k.$$

The expected squared-ℓ_2 error per component (mean-squared error) is

$$\text{MSE} = \frac{1}{M} E \|x - \hat{x}\|^2 = \frac{1}{N} \left[\sum_{k=1}^M \eta_k \tilde{\varphi}_k \right]^2$$

$$= \frac{1}{N} \left[\sum_{i=1}^M \sum_{k=1}^M \eta_i \eta_k \tilde{\varphi}_i^* \tilde{\varphi}_k \right] = \frac{1}{N} \sum_{i=1}^M \sum_{k=1}^M \delta_{ik} \sigma^2 \tilde{\varphi}_i^* \tilde{\varphi}_k$$

$$= \frac{1}{N} \sigma^2 \sum_{k=1}^M \|\tilde{\varphi}_k\|^2,$$

Goyal, Kovacevic & Kelner (2001)
\[
\text{MSE} = \frac{1}{N} \sigma^2 \sum_{k=1}^{M} \| \phi_k \|^2 = N^{-1} \sigma^2 \text{tr}(\hat{F} \hat{F}^*) = N^{-1} \sigma^2 \text{tr}((F^*F)^{-1}) \\
= N^{-1} \sigma^2 \text{tr}(V \Lambda^{-1} V^*) = N^{-1} \sigma^2 \text{tr}(\Lambda^{-1}),
\]

where \(F^*F = V \Lambda V^* \) is the spectral decomposition of \(F^*F \). With the \(\{\lambda_i\}_{i=1}^{N} \) denoting the eigenvalues of \(F^*F \), we have

\[
\text{MSE} = \frac{1}{N} \sigma^2 \sum_{i=1}^{N} \frac{1}{\lambda_i},
\]

(19)

Property 2.2. For any frame, the sum of the eigenvalues of \(F^*F \) equals the sum of the lengths of the frame vectors. In particular, for a uniform frame the sum of the eigenvalues equals \(N \).

Proof. Denote the eigenvalues by \(\{\lambda_i\}_{i=1}^{N} \). Using elementary properties of the trace and the definition of \(F \),

\[
\sum_{i=1}^{N} \lambda_i = \text{tr}(F^*F) = \text{tr}(FF^*) = \sum_{i=1}^{M} \phi_i^* \phi_i = \sum_{i=1}^{M} \| \phi_i \|^2.
\]

Goyal, Kovacevic & Kelner (2001)

Robustness to additive noise

Theorem 3.1. When encoding with a uniform frame and decoding with linear reconstruction (16), under the noise model (14), the MSE is minimum if and only if the frame is tight.

Theorem 3.2. Consider linear reconstruction (16) with noise \(\eta \) satisfying (14) and define the mean-squared error (MSE) by \(N^{-1} E \| x - \hat{x} \|^2 \). For any frame, the MSE is given by (19) and satisfies

\[
B^{-1} \sigma^2 \leq \text{MSE} \leq A^{-1} \sigma^2.
\]

(20)

For a uniform frame,

\[
\frac{N \sigma^2}{M} \leq \text{MSE} \leq A^{-1} \sigma^2.
\]

(21)

For a uniform tight frame,

\[
\text{MSE} = \frac{N}{M} \sigma^2 = r^{-1} \sigma^2.
\]

(22)

Goyal, Kovacevic & Kelner (2001)
Robustness to erasures

\[x \in \mathbb{R}^N \rightarrow F \rightarrow y \in \mathbb{R}^M \rightarrow \hat{y} \in \mathbb{R}^M \rightarrow L_E \rightarrow \hat{x} \in \mathbb{R}^N \rightarrow x \in \mathbb{R}^N \]

FIG. 8. The full system, as considered in Section 4. A signal expansion is computed with frame operator \(F \). The expansion coefficients are quantized, which is modeled as the addition of a vector \(q \) satisfying (14). The deletion of some quantized expansion coefficients in the transmission is represented by operator \(L_E \). An estimate of the original vector is computed using the linear MMSE estimator.

Theorem 4.4. Consider encoding with a uniform frame and decoding with linear reconstruction (16), under noise model (14). The MSE averaged over all possible erasures of one frame element,

\[\text{MSE}_j = \frac{1}{M} \sum_{k=1}^{M} \text{MSE}_{[k]} . \]

is minimum if and only if the original frame is tight. Also, a tight frame minimizes the maximum distortion caused by one erasure

\[\max_{k=1,2,...,M} \text{MSE}_{[k]} . \]

Goyal, Kovacevic & Kelner (2001)

Robustness to bounded noise and quantization

\[x \in \mathbb{R}^N \rightarrow F \rightarrow y \in \mathbb{R}^M \rightarrow Q \rightarrow \hat{y} \in \mathbb{R}^M \rightarrow \text{reconstruction} \rightarrow \hat{x} \in \mathbb{R}^N \]

An estimate \(\hat{x} \) is called **consistent** with \(\hat{y} = Q(Fx) \) when \(Q(F\hat{x}) = \hat{y} \).

The concept of consistency can be used for both deterministic and random quantization.

In a variety of scenarios, consistency reduces MSE from \(O\left(\frac{N}{M}\right) \) to \(O\left(\left(\frac{N}{M}\right)^2\right) \).
Robustness to bounded noise and quantization

Fig. 3. Illustration of consistent reconstruction.

Goyal, Vetterli & Thao (1998)

TABLE I
ALGORITHM FOR CONSISTENT RECONSTRUCTION FROM A QUANTIZED FRAME EXPANSION

1. Form

\[\bar{F} = \begin{bmatrix} F \\ -F \end{bmatrix} \quad \text{and} \quad \bar{y} = \begin{bmatrix} \frac{1}{2} \Delta + \hat{y} \\ \frac{1}{2} \Delta - \hat{y} \end{bmatrix}. \]

2. Pick an arbitrary cost function \(c \in \mathbb{R}^N \).
3. Use a linear programming method to find \(\hat{x} \) to minimize \(c^T \hat{x} \) subject to \(\bar{F} \hat{x} \leq \bar{y} \).

(Algorithm written for \(Q \) being a quantizer that rounds to nearest multiple of \(\Delta \)).

Goyal, Vetterli & Thao (1998)
The Windowed Fourier Transform

The usual Fourier transform:

\[F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} \, dt = \langle f(t), e^{j\omega t} \rangle \]

The windowed Fourier transform (WFT):

\[\text{WFT}_f(\omega, \tau) = \int_{-\infty}^{\infty} g(t-\tau) f(t) e^{j\omega t} \, dt \]

The basis elements

\[g_{\omega, \tau}(t) = g(t-\tau) e^{j\omega t}, \quad \omega \in \mathbb{R}, \tau \in \mathbb{R} \]

\[\text{WFT}_f(\omega, \tau) = \langle f(t), g_{\omega, \tau}(t) \rangle \]

Also known as the Gabor transform, or short-time Fourier transform.
Examples of the Window Functions

- the classical choice (Gaussian bell)
 \[g(t) = \frac{1}{\sqrt{2\pi a}} e^{-t^2/(2a^2)} \]

- sinc function
 \[g(t) = \sqrt{\alpha} \frac{\sin(\pi t/\alpha)}{\pi t} \]

- raised-cosine window
 \[g(t) = \begin{cases} \sqrt{\frac{a}{\pi}}(1 + \cos(2\pi t/\alpha)) & t \in [-\alpha/2, \alpha/2] \\ 0 & \text{else} \end{cases} \]

Normalization to ensure unit norm of the window functions

Invertibility, Energy Conservation, and Shift Properties

The inversion formula:
\[f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} WFT_f(\omega, \tau) g_{\omega,\tau}(t) \, d\omega \, d\tau. \]

Energy conservation:
\[\|f\|^2 = \int_{-\infty}^{\infty} |f(t)|^2 \, dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |WFT_f(\omega, \tau)|^2 \, d\omega \, d\tau. \]

Spatial shift:
\[h(t) = f(t - T) \implies WFT_h(\omega, \tau) = e^{-j\omega T} WFT_f(\omega, \tau - T) \]

Frequency shift:
\[h(t) = e^{j\Omega t} f(t) \implies WFT_h(\omega, \tau) = WFT_f(\omega - \Omega, \tau) \]
Discretization of WFT and the Frame Bounds

WFT: \[g_{\omega, \tau}(t) = g(t - \tau) e^{j\omega t}, \quad \omega, \tau \in \mathbb{R} \]

Discretization: \[g_{m,n}(t) = g(t - nt_0) e^{jm\omega_0 t}, \quad t_0 > 0, \omega_0 > 0. \]

Frame bounds: \[A \leq \frac{2\pi}{\omega_0 t_0} \|g\|^2 \leq B \]

Critical (Nyquist) sampling: \[\omega_0 t_0 = 2\pi \]

Parameter Choices for WFT Frames

Theorem: (Balian-Low) If \(g_{m,n}(t) = e^{2\pi m t} g(t - n), \ m, n \in \mathbb{Z} \) constitute a frame, then either

\[\int t^2 |g(t)|^2 \, dt = \infty \]

or

\[\int \omega^2 |G(\omega)|^2 \, d\omega = \infty. \]
Example: a Gaussian Window

- Window
 \[g(t) = \pi^{-1/4} e^{-t^2/2} \]

- Sampling
 \[\omega_0 = f_0 = \sqrt{\lambda} 2\pi \]

- Oversampling factors
 \[\omega_0 f_0 = 2\pi \lambda \]

\[\lambda = 0.25, 0.375, 0.5, 0.75, 0.95, 1 \]