The Green Gap:

Challenges in Achieving High Efficiency Green LEDs for Solid State Lighting

Nan Yang
May 12, 2009
Outline

• Motivation
• Principles of operation
• Approaches
 – III-P
 – III-N
 – II-VI
• Improving external quantum efficiency
• Conclusions
Lighting Trends
Lighting Trends

• 22% of all the electricity generated in the US spent on lighting
 – 0.03% solid state lighting
Funding/Market

- Market for high brightness LEDs: $5.1 billion
 - For solid state lighting: $450 million

DOE Multi-Year Program Plan FY’09-FY’15: Solid-State Lighting Research and Development
Creating White Light

• Blue/UV LED + phosphor
 – 263 lm/W (blue LED)
 – 203 lm/W (UV LED)
 – Stokes shift: inherent loss in phosphor down-conversion

• Color mixing
 – 408 lm/W (RGYB)

• Limitation: No High Brightness GREEN LEDs!!!
Device Operation

Materials Choices

- AlInGaP
- InGaN
- ZnSe
The Green Gap

AlGaInP

AlGaInP: direct-indirect transition

Direct-indirect gap transition
556-532 nm

Compressive strain increases bandgap of InGaP

AlGaInP: electron blocking

Tensile strain increases bandgap of AlInP

InGaN

InGaN: substrate

- SiC, sapphire
 - high lattice mismatch.
 - threading dislocations 10^7-10^8 cm$^{-2}$

- Solutions:
 - ELOG
 - GaN substrate
InGaN: Polarization

InGaN: In challenges

• In composition increases, growth temperatures decrease
 – Greater concentration of point defects

• Composition inhomogeneities
 – Conventionally thought to be beneficial
 – Effect of non-uniform strain and polarization requires further investigation
ZnSe

ZnSe system: Challenges

- device lifetime
 - defect density
 - polar
 - low growth temperatures
 - large tensile strain in ZnS$_{0.07}$Se$_{0.93}$
 - large thermal expansion mismatch with GaAs
 - defects mobile, weak bonding
 - Dislocation accumulation in active region at modest current densities
ZnSe: Solutions

- Native ZnSe substrates
 - lifetime of 675h (15 A/cm2)
 - transparent substrate

- Add Be
 - decrease the mobility of the dislocations that do exist
 - BeSe and BeTe more covalent, lower dislocation velocity

- Incorporate better electron-blocking layers
 - Prevent electron overflow into the p-cladding layers
 - lifetime 10,000h (14.3 A/cm2)

Improving extraction efficiency

• “borrow” techniques from other high brightness LEDs/laser diodes
 – transparent substrates
 – Bragg reflectors
 – resonant cavities
 – photonic crystals
 – surface texturing
 – encapsulation in hemispherical packaging
Conclusions

• **The common trend**
 – Reduce dislocations/defects to reduce non-radiative recombination sites and increase lifetime

• **AlGaInP**
 – Quaternary system, most difficult to control
 – Indirect gap transition a problem
 – Most established technology, compatible with red

• **InGaN**
 – New technology, more understanding required
 – Great potential, compatible with blue

• **ZnSe**
 – Lifetime is major problem

• **COST is important!!!**