LECTURE 19

• Readings: Sections 5.1–5.3

Lecture outline

• $M_n = (X_1 + X_2 + \cdots + X_n)/n$ and its limits
• Markov inequality
• Chebyshev inequality
• Convergence in probability
• Weak law of large numbers (convergence in probability of M_n)

Fourth quarter of the course

• Combining probabilistic modeling and data
• Ch. 5: Limit theorems (omit Section 5.5)
 – Emphasis on sample mean of sample X_1, X_2, \ldots, X_n
 $M_n = \frac{X_1 + X_2 + \cdots + X_n}{n}$
 – but also look at other sequences
 – A rationale for the importance of the normal distribution
 – Make inferences about parameters of a model from data
• Ch. 8: Bayesian statistical inference
 – data come from a model with random parameters
• Ch. 9: Classical statistical inference
 – data come from a model with non-random parameters

Sample mean M_n

• Let X_1, X_2, \ldots be independent and identically distributed with $E[X_i] = \mu$ and $\text{var}(X_i) = \sigma^2$
• Can we use n samples to estimate μ?
• Form sample mean
 $$M_n = \frac{X_1 + X_2 + \cdots + X_n}{n}$$
 (a random variable)
 – $E[M_n] = \mu$
 – $\text{var}(M_n) = \frac{\sigma^2}{n}$
 – What happens as $n \to \infty$?

Markov inequality

• Any nonnegative-valued random variable with a mean has a limited probability of being much larger than its mean
• Let X be any random variable that takes only nonnegative values. Let a be any positive number. Then
 $$P(X \geq a) \leq \frac{E[X]}{a}.$$
 – Proof: Define a convenient function of X:
 $$Y_a = \begin{cases} 0, & \text{for } X \in [0, a); \\ a, & \text{for } X \in [a, \infty). \end{cases}$$
 $$E[X] \geq E[Y_a] = aP(X \geq a)$$

Chebyshev inequality

• Any random variable with a mean and a variance is unlikely to differ greatly from its mean
• Let X be a random variable with $E[X] = \mu$ and $\text{var}(X) = \sigma^2$. Let c be any positive number. Then
 $$P(|X - \mu| \geq c) \leq \frac{\sigma^2}{c^2}.$$
 – Proof: Apply Markov inequality to $(X - \mu)^2$.

Chebyshev inequality (2)

• Alternate proof for continuous X: Let
 $$g(x) = \begin{cases} 0, & \text{for } |x - \mu| < c; \\ c^2, & \text{for } |x - \mu| \geq c, \end{cases}$$
 so $(x - \mu)^2 \geq g(x)$ for all x.
 $$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f_X(x) \, dx$$
 $$\geq \int_{-\infty}^{\infty} g(x) f_X(x) \, dx$$
 $$= c^2 P(|X - \mu| \geq c)$$
 – Alternate expression (set $c = k\sigma$):
 $$P(|X - \mu| \geq k\sigma) \leq \frac{1}{k^2}$$
Deterministic convergence
- Sequence of numbers \(a_n \) **converges** to number \(a \) means “\(a_n \) eventually gets and stays (arbitrarily) close to \(a \)”
- Formally: Sequence \(a_n \) **converges** to \(a \) when, for every \(\epsilon > 0 \), there exists \(n_0 \) such that \(| a_n - a | \leq \epsilon \) for every \(n \geq n_0 \).

Convergence in probability
- Sequence of random variables \(Y_n \) **converges in probability** to a number \(a \) means “almost all of the PMF/PDF of \(Y_n \) eventually gets concentrated (arbitrarily) close to \(a \)”
- Formally: For every \(\epsilon > 0 \),
\[
\lim_{n \to \infty} P(|Y_n - a| \geq \epsilon) = 0
\]

Convergence of the sample mean
(Weak law of large numbers)
- \(X_1, X_2, \ldots \) i.i.d. with finite mean \(\mu \) and variance \(\sigma^2 \)
- \(M_n = \frac{X_1 + \cdots + X_n}{n} \)
- \(\mu = E[M_n] = \mu \) \(\quad \) \(\var(M_n) = \frac{\sigma^2}{n} \)
- Apply Chebyshev inequality to \(M_n \):
\[
P(|M_n - \mu| \geq \epsilon) \leq \frac{\var(M_n)}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}
\]
Since \(\epsilon > 0 \) is arbitrary and
\[
\lim_{n \to \infty} \frac{\sigma^2}{n\epsilon^2} = 0,
\]
\(M_n \) converges in probability to \(\mu \).

The pollster’s problem
- \(f \): fraction of population that “…
- \(i \)th (randomly selected) person polled: \(X_i = \begin{cases} 1, & \text{if yes;} \\ 0, & \text{if no.} \end{cases} \)
- \(M_n = (X_1 + \cdots + X_n)/n \) is fraction of “yes” in our sample
- Goal: “95% confidence in being within 1% error”
\[
P(|M_n - f| \geq 0.01) \leq 0.05
\]
- Use Chebyshev’s inequality:
\[
P(|M_n - f| \geq 0.01) \leq \frac{\sigma^2_{M_n}}{(0.01)^2} = \frac{\sigma^2}{n(0.01)^2} \leq \frac{1}{4n(0.01)^2}
\]
- If \(n = 50,000 \), then \(P(|M_n - f| \geq 0.01) \leq 0.05 \)

Different scalings of \(M_n \)
- \(X_1, X_2, \ldots \) i.i.d. with finite mean \(\mu \) and variance \(\sigma^2 \)
- Let \(S_n = X_1 + X_2 + \cdots + X_n \)
- \(M_n = S_n/n \)
- \(S_n \)
- \(S_n/\sqrt{n} \)