LECTURE 21

- Readings: Sections 8.1–8.2

Lecture outline

- Statistical inference
 - Contrast with probability theory
 - Bayesian vs. classical
- Bayesian inference
 - Four primary forms of Bayes’ rule
 - Types of problems/outputs
 - MAP estimation

Statistics

- Drawing inferences from limited and imperfect data
- Design and interpretation of experiments
 - polling, census, medical/pharmaceutical trials
- Netflix competition
- Finance
- Signal processing
 - Tracking, detection, speaker identification, forensics

Bayesian vs. classical inference

- Want to make inferences about parameter(s) θ
- Bayesian: θ is a realization of random variable Θ
- Classical: θ is unknown but not random

Four versions of Bayes’ rule

- Θ discrete, X discrete: $p_{\Theta|X}(\theta|x) = \frac{p_{\Theta}(\theta)p_{X|\Theta}(x|\theta)}{\sum_k p_{\Theta}(k)p_{X|\Theta}(x|k)}$
- Θ discrete, X cont.: $p_{\Theta|X}(\theta|x) = \frac{p_{\Theta}(\theta)f_{X|\Theta}(x|\theta)}{\int f_{\Theta}(t)f_{X|\Theta}(x|t)dt}$
- Θ cont., X discrete: $f_{\Theta|X}(\theta|x) = \frac{f_{\Theta}(\theta)p_{X|\Theta}(x|\theta)}{\int f_{\Theta}(t)p_{X|\Theta}(x|t)dt}$
- Θ cont., X cont.: $f_{\Theta|X}(\theta|x) = \frac{f_{\Theta}(\theta)f_{X|\Theta}(x|\theta)}{\int f_{\Theta}(t)f_{X|\Theta}(x|t)dt}$

Parameter of a coin

- Suppose a coin has probability of heads θ. What do we believe about θ after observing X heads in n tosses?
- What is the Bayesian approach?
 - $f_{\Theta|X}(\theta|x)$ = Beta(α, β) prior:
 - $f_{\Theta}(\theta) = \begin{cases} \frac{1}{B(\alpha, \beta)}\theta^{\alpha-1}(1-\theta)^{\beta-1}, & \text{if } 0 < \theta < 1; \\ 0, & \text{otherwise} \end{cases}$
 - $B(\alpha, \beta) = \frac{(\alpha-1)(\beta-1)!}{(\alpha+\beta-1)!}$

Common mean of normal random variables

- Suppose normal X_1, X_2, \ldots, X_n have an unknown common mean θ and known variances $\sigma_1^2, \sigma_2^2, \ldots, \sigma_n^2$
- If Θ is normal and X_is are conditionally independent given Θ, then $f_{\Theta|X}$ is normal
 - [Algebraic details in Example 8.3]
- Every observed X_i ⇒ posterior update within normal class
 - Only mean update and variance update
- Important in engineering applications
Questions asked about θ

- **Binary hypothesis testing:**
 Choose between two possibilities for θ

- **m-ary hypothesis testing:**
 Choose between m possibilities for θ

- **Estimation:**
 Pick a number $\hat{\theta}$ that approximates θ
 - **Estimator:** random variable $\hat{\Theta} = g(X)$ for some g
 - **Estimate:** value $\hat{\theta}$ of an estimator (determined by realization x of X)

Maximum a posteriori probability (MAP) rule

- Posterior distribution: PMF $p_{\Theta|X}(\cdot|x)$ or PDF $f_{\Theta|X}(\cdot|x)$

- Pick $\hat{\theta}$ such that
 \[
 p_{\Theta|X}(\hat{\theta}|x) = \max_{\theta} p_{\Theta|X}(\theta|x) \\
 f_{\Theta|X}(\hat{\theta}|x) = \max_{\theta} f_{\Theta|X}(\theta|x)
 \]