LECTURE 5

Last time:

• Stochastic processes
• Markov chains
• Entropy rate
• Random walks on graphs
• Hidden Markov models

Lecture outline

• Codes
• Kraft inequality
• optimal codes.

Reading: Scts. 5.1-5.4.
Codes for random variables

Notation: the concatenation of two strings x and y is denoted by xy. The set of all strings over a finite alphabet \mathcal{D} is denoted by \mathcal{D}^*. W.l.o.g. assume $\mathcal{D} = 0, 1, \ldots, D - 1$ where $D = |\mathcal{D}^*|$.

Definition: a source code for a random variable X is a map

$$C : \mathcal{X} \mapsto \mathcal{D}^*$$

$$x \rightarrow C(x)$$

where $C(x)$ is the codeword associated with x.

$l(x)$ is the length of $C(x)$.

The length of a code C is

$$L(C) = \mathbb{E}_X[l(X)]$$
Codes for random variables

C is nonsingular if every element of \mathcal{X} maps onto a different element of \mathcal{D}^*

The extension of a code $C : \mathcal{X} \mapsto \mathcal{D}^*$ is the code

\[C^* : \quad \mathcal{X}^* \mapsto \mathcal{D}^* \]
\[x^n \rightarrow C^*(x^n) = C(x_1)C(x_2) \ldots C(x_n) \]

A code is uniquely decodable if its extension is nonsingular

A code is instantaneous (or prefix code) iff no codeword of C is a prefix of any other codeword C

Visually: construct a tree whose leaves are codewords
Kraft inequality

Any instantaneous code C with code lengths l_1, l_2, \ldots, l_m must satisfy

$$\sum_{i=1}^{m} D^{-l_i} \leq 1$$

Conversely, given lengths l_1, l_2, \ldots, l_m that satisfy the above inequality, there exists an instantaneous code with these codeword lengths.

Proof: construct a D-ary tree T (code-words are leaves)

Extend tree T to D-ary tree T' with depth l_{MAX}, total number of leaves is $D^{l_{MAX}}$
Kraft inequality

Each leaf of T' is a descendant of at most one leaf of T

Leaf in T corresponding to codeword $C(i)$ has exactly $D^{l_{\text{MAX}}-l_i}$ descendants in T' (1 if $l_i = l_{\text{MAX}}$)

Summing over all leaves of T gives

$$\sum_{i=1}^{m} D^{l_{\text{MAX}}-l_i} \leq D^{l_{\text{MAX}}}$$

$$\Rightarrow \sum_{i=1}^{m} D^{-l_i} \leq 1$$
Kraft inequality

Given lengths l_1, l_2, \ldots, l_m satisfying Kraft’s inequality, we can construct a tree by assigning $C(i)$ to first available node at depth $C(i)$
Extended Kraft inequality

Kraft inequality holds for all countably infinite set of codewords

Let $n(y_1y_2 \ldots y_{l_i})$ be the real $\sum_{j=1}^{l_i} y_j D^{-j}$ associated with the i^{th} codeword

Why are the $n(y_1y_2 \ldots y_{l_i})$s for different codewords different?

By the same reasoning, all intervals

$$\left(n(y_1y_2 \ldots y_{l_i}), n(y_1y_2 \ldots y_{l_i}) + \frac{1}{D^{l_i}} \right)$$

are disjoint since these intervals are all in $(0, 1)$, the sum of their lengths is ≤ 1

For converse, reorder indices in increasing order and assign intervals as we walk along the unit interval
Optimal codes

Optimal code is defined as code with smallest possible $C(L)$ with respect to P_X

Optimization:

\[
\text{minimize } \sum_{x \in \mathcal{X}} P_X(x) l(x)
\]

subject to \(\sum_{x \in \mathcal{X}} D^{-l(x)} \leq 1 \)

and \(l(x) \)s are integers
Optimal codes

Let us relax the second constraint and replace the first with equality to obtain a lower bound

\[J = \sum_{x \in \mathcal{X}} P_X(x) l(x) + \lambda \left(\sum_{x \in \mathcal{X}} D^{-l(x)} - 1 \right) \]

use Lagrange multipliers and set \(\frac{\partial J}{\partial l(i)} = 0 \)

\[P_X(i) - \lambda \log(D) D^{-l(i)} = 0 \]

equivalently

\[D^{-l(i)} = \frac{P_X(i)}{\lambda \log(D)} \]

using Kraft inequality (now relaxed to equality) yields

\[1 = \sum_{i \in \mathcal{X}} D^{-l(i)} = \sum_{i \in \mathcal{X}} \frac{P_X(i)}{\lambda \log(D)} \]

so \(\lambda = \frac{1}{\log(D)} \), yielding \(l(i) = -\log_D(P_X(i)) \)
Optimal codes

Thus a bound on the optimal code length is

\[- \sum_{i \in X} P_X(i) \log_D(P_X(i)) = H_D(X)\]

This is lower bound, equality holds iff P_X is D-adic, $P_X(i) = D^{-l(i)}$ for integer $l(i)$.
Optimal codes

The optimal codelength L^* satisfies

$$H_D(X) \leq L^* \leq H_D(X) + 1$$

Upper bound: take $l(i) = \lceil \log_D(P_X(i)) \rceil$

$$\sum_{i \in \mathcal{X}} D[-\log_D(P_X(i))] \leq \sum P_X(i) = 1$$

thus these lengths satisfy Kraft’s inequality and we can create a prefix-free code with these lengths

$$L^* \leq \sum_{i \in \mathcal{X}} P_X(i)[-\log_D(P_X(i))]$$

$$\leq \sum_{i \in \mathcal{X}} P_X(i)(-\log_D(P_X(i)) + 1)$$

$$= H_D(X) + 1$$

We call these types of codes Shannon codes.
Optimal codes

Is this as tight as it gets?

Consider coding several symbols together

\[C : \mathcal{X}^n \rightarrow \mathcal{D}^* \]

expected codeword length is \(\sum_{x^n \in \mathcal{X}^n} P_{X^n}(x^n) l(x^n) \)

optimum satisfies

\[H_D(X^n) \leq L^* \leq H_D(X^n) + 1 \]

per symbol codeword length is

\[\frac{H_D(X^n)}{n} \leq \frac{L^*}{n} \leq \frac{H_D(X^n)}{n} + \frac{1}{n} \]