Problem 1: Graded by Prof. Fonstad

a) i) Applying $v_{GS} > V_T$ to an n-channel MOSFET accumulates additional holes at the interface. The additional amount of interface charge is $-WLC_{ox}^*(v_{GS} - V_T) = -5 \times 10^{-4} \times 2 \times 10^{-3} \times 10^{-8} \times 1 = 10^{-16}$ Coul.

ii) The additional holes come from the p-type bulk region.

iii) Applying $v_{GS} < V_{FB}$ to an n-channel MOSFET increases the number of inversion layer electrons at the interface. The additional charge is $-WLC_{ox}^*(v_{GS} - V_{FB}) = 5 \times 10^{-4} \times 2 \times 10^{-3} \times 10^{-8} \times 1 = 10^{-16}$ Coul.

iv) The additional electrons come from the n-type source and drain regions.

b) i) One of the n+ regions (source or drain) is the emitter, the other n+ region is the collector, and the base is the p-region, or substrate. To bias an npn BJT in its forward active region requires $V_{CE} \geq 0.2$ V and $V_{BE} \approx 0.6$ to 0.7 V. Saying both had to be greater than zero was accepted and earned most of the points.

ii) The forward current gain, β_f, is low because a large fraction of the electrons injected across the emitter-base diode into the p-region are directed vertically and not laterally toward the collector.

The early voltage is low, and thus there is a significant amount of base width modulation, because the collector is more heavily doped than the base, meaning that the depletion region at the collector-base junction extends primarily into the base side of the junction.

iii) Adding a heavily doped p-type region under the n+ regions reduces the vertical injection of electrons across the emitter-base junction and the junction current is now predominantly electrons flowing laterally across the junction and toward the relatively close collector. This makes β_f much larger.

c) i) Doing a Taylor’s Series expansion about Q, and isolating the small signal terms:

$$i_d = (di_D/dv_{GS})|_Q v_{gs} + (di_D/dv_{DS})|_Q v_{ds}$$

$$= (W/L) \mu_e [C_{ox}^* V_{DS} v_{gs} + (C_{ox}^* V_{GS} + \alpha) v_{ds}]$$

ii) The small signal linear equivalent circuit is:

$$g_m v_{gs}$$

iii) To find R_L we first find $I_D = 10^{-7} (10 V_{GS} + 1) V_{DS}$ with $V_{GS} = 1$ V and $V_{DS} = 1.5$ V, or $I_D = 1.65 \times 10^{-6}$ Amps. The voltage drop across R_L must be 1.5 V, so

$$R_L = 1.5/(1.65 \times 10^{-6}) = 900,000 \text{ Ohms}$$
We can now use this result and our linear equivalent circuit to draw the linear equivalent circuit for the full circuit, and from that we find the voltage gain:

\[R_L \]

We find \(g_m = 1.5 \times 10^{-6} \) mho and \(g_o = 1.1 \times 10^{-6} \) mho, and using the \(R_L \) above we have \(1/R_L = G_L = 1.1 \times 10^{-6} \) mho. Thus, \(A_v = v_{out}/v_{in} = -g_m/(g_o+G_L) \approx -0.7 \).

Problem 2: Graded by Prof. Weinstein

a) In flatband there is no depletion region, \(\phi(0) = \phi_n \), and there is no voltage drop across the dielectric.

As indicated in the figure, \(V_{FB} = 1.5 \phi_n \).

b) At flatband the hole and electron populations are the same as they are in the bulk of the semiconductor. Thus, \(n(x = 0^+) = N_D \), and \(p(x = 0^+) = n_i^2/N_D \).

c) At the onset of threshold \(\phi(0) = -\phi_n \), the depletion region accommodates a change in potential of \(2 \phi_n \) and thus \(X_D = [2\varepsilon_{Si} (2 \phi_n)/qN_D]^{1/2} \). The potential drop across the dielectric \(qN_D X_D t_{hi}/\varepsilon_{hi} \) and \(V_T - V_{FB} = -2 \phi_n - (t_{hi}/\varepsilon_{hi})[2\varepsilon_{Si} (2 \phi_n) qN_D]^{1/2} \).

With these results, we find \(V_T = V_{FB} - 2 \phi_n - (t_{hi}/\varepsilon_{hi})[2\varepsilon_{Si} (2 \phi_n) qN_D]^{1/2} \)

\[= -0.5 \phi_n - (t_{hi}/\varepsilon_{hi})[2\varepsilon_{Si} (2 \phi_n) qN_D]^{1/2} \]

The electrostatic potential profile at the onset of inversion:
The net charge distribution at the onset of inversion:

\begin{align*}
\text{p}(x) &= q_{N_D} x D_{p} x_0 \\
&= -q_{N_D} x_{0} D_{p} x_0
\end{align*}

d) At the onset of inversion, the hole density at the interface is \(N_D \) i.e. \(p(x = 0^+) = N_D \), and \(n(x = 0^-) = n_i^2/N_D \).

e) If there is a net sheet charge density, \(\sigma_p \), at the interface, then at flatband there is a net sheet charge density, \(-\sigma_p \), on the gate, and no other charge in semiconductor up to the interface.
The voltage drop across the gate dielectric is \(\sigma_p (t_{hi}/\varepsilon_{hi}) \), and the flatband voltage must be more negative by this amount, \(\Delta V_{FB} = -\sigma_p (t_{hi}/\varepsilon_{hi}) \).
The threshold voltage will be more negative by this same amount: \(\Delta V_T = -\sigma_p (t_{hi}/\varepsilon_{hi}) \).

f) With an additional dielectric layer under the gate, there is additional voltage drop across the insulator for the same charge on the gate:
\(\Delta V (\text{w. } \text{SiO}_2) = Q_G (t_{hi}/\varepsilon_{hi}) \) and
\(\Delta V (\text{w. } \text{SiO}_2) = Q_G (t_{hi}/\varepsilon_{hi}) + Q_G (t_{ox}/\varepsilon_{ox}) \).
\(C_G = Q_G/\Delta V = 1/(t_{hi}/\varepsilon_{hi} + t_{ox}/\varepsilon_{ox}) \).
Thus \(C_G (\text{w. } \text{SiO}_2)/ C_G (\text{w.o. } \text{SiO}_2) = \frac{1}{2} \).

Problem 3: Graded by Prof. Palacios

a) \(I_{D,sat} = (W_{min}/2L_{min}) \mu_e (\varepsilon_{ox}/t_{ox}) (V_{GS} - V_T)^2 [1+\lambda_n (V_{DS} - V_{DS,sat})] \)
\(= [135/(2 \times 35)] \times 500 \times (3.5 \times 10^{-13}/10^{-7}) (0.6)^2 (1+0.001(1-0.4)) \approx 1.2 \text{ mA} \)

b) \(r_o = 1/g_o = 1/\lambda_n I_D = 1/(10^{-3} \times 1.2 \times 10^{-3}) = 10^6/1.2 = 800,000 \text{ Ohms} \)

c) \begin{align*}
V_{IN1} & \quad V_{IN2} & \quad V_{OUT} \\
0 \text{ V} & \quad 0 \text{ V} & \quad 1 \text{ V} \\
0 \text{ V} & \quad 1 \text{ V} & \quad 1 \text{ V} \\
1 \text{ V} & \quad 0 \text{ V} & \quad 1 \text{ V} \\
1 \text{ V} & \quad 1 \text{ V} & \quad 0 \text{ V}
\end{align*}

d) \(W_{n, Inverter} = 1 \text{ W}_{min} \) and \(W_{p, Inverter} = (\mu_e/\mu_h) \text{ W}_{n, Inverter} = (500/200) \text{ W}_{min} = 2.5 \text{ W}_{min} \)

e) We want the n-MOSFETs to each be minimum length since the effective length will be the sum of the lengths of two n-MOSFETs: \(L_{n,NAND} = 1 \text{ L}_{min} \), and \(L_{n,\text{Eff}} = 2 \text{ L}_{min} \).
To minimize the delay, we will require the same current capability as in a standard inverter.
To achieve this with an effective gate length \(L_{n,\text{Eff}} = 2 \text{ L}_{min} \), the width needs to be \(W_{n,NAND} = 2 \text{ W}_{min} \).

As the current capability of the n-MOS branch is the same as in an inverter, the p-MOS branch can be sized as in the inverter in question d).
Thus \(C_{IN,NAND} = 2.5 \text{ W}_{min} \text{L}_{min} + 2 \text{ W}_{min} \text{L}_{min} = 4.5 \text{ W}_{min} \text{L}_{min} \).
\(C_{IN,Inverter} = W_{min} \text{L}_{min} + 2.5 \text{ W}_{min} \text{L}_{min} = 3.5 \text{ W}_{min} \text{L}_{min} \), so \(C_{IN,NAND} = 1.29 C_{IN,Inverter} \).

f) The question speaks of inverter equivalents. The inverters have 15nA leakage if their output is high (n-MOS off), and 37.5 nA leakage if their output is low (p-MOS, which is 2.5 x as wide, off) so the static power dissipation is 15 nA/gate x 1 V x 10^9 gates + 37.5 nA/gate x 1 V x 10^9 gates = 47.5 Watts!
If you did the problem assuming 10^9 NAND gates, then the output is low, we have subthreshold current coming from each one of the two p-MOSFETs, which are connected in parallel. Therefore, the power dissipation is: $2 \text{ transistors/gate} \times 15 \text{ nA/transistor} \times 1 \text{ V} \times (1 \times 10^9) \text{ gates} = 30 \text{ Watts}$. When the output is high, the leakage current is due to the subthreshold current through the n-MOSFETs, which are connected in series and the current is dominated by one of them (i.e. they share the same current). Thus, the power dissipation in this state is: $1 \text{ transistor/gate} \times 15 \text{ nA/transistor} \times 1 \text{ V} \times (1 \times 10^9) \text{ gates} = 15 \text{ Watts}$. By adding the two contributions, the total dissipated power is: $30 \text{ W} + 15 \text{ W} = 45 \text{ W}$

\[\text{g) i) } E_{\text{ave}} = 1 \text{ V} / (35 \times 10^7 \text{ cm}) \approx 3 \times 10^3 \text{ V/cm} \]

\[\text{ii) The average sheet charge density is } q_{n^*} = C_{\text{ox}}^* (V_{CS} - V_T) = 0.6 \left(\varepsilon_{\text{ox}} / t_{\text{ox}} \right) = 0.6 \times 3.5 \times 10^6 = 2.1 \times 10^6 \text{ coul/cm}^2. \text{ The current, } i_D = W q_{n^*} s_{\text{ch,ave}}. \text{ Assuming } i_D = 250 \mu\text{A}, \text{ we have: } s_{\text{ch,ave}} = i_D / (W q_{n^*}) = 2.5 \times 10^4 / (1.35 \times 10^3 \times 2.1 \times 10^6) \approx 0.88 \times 10^7 \text{ cm/s}. \]

Assuming $i_D = 1.2 \text{ mA}$ as found in part (a), we find: $s_{\text{ch,ave}} \approx 4.2 \times 10^7 \text{ cm/s}$. \n
\[\text{iii) The current is almost 5 times smaller than the low field constant mobility model predicts because the velocity saturates at just under } 10^7 \text{ V/cm.} \]

Exam Statistics

Average/Standard deviation:

<table>
<thead>
<tr>
<th></th>
<th>Problem 1</th>
<th>Problem 2</th>
<th>Problem 3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ave</td>
<td>21.5</td>
<td>19.2</td>
<td>25.1</td>
<td>65.8</td>
</tr>
<tr>
<td>Mean</td>
<td>21.5</td>
<td>19.2</td>
<td>25.1</td>
<td>65.8</td>
</tr>
<tr>
<td>σ</td>
<td>5.3</td>
<td>7.6</td>
<td>5.5</td>
<td>14.9</td>
</tr>
</tbody>
</table>

Class median: 65

Distribution to nearest 5:

Find your face in this picture