LECTURE 14

• **Readings:** Start Section 6.2

Lecture outline

• Review of Bernoulli process
• Definition of Poisson process
• Distribution of number of arrivals
• Distribution of interarrival times
• Other properties of the Poisson process
Review: Bernoulli process

- X_1, X_2, \ldots: independent Bernoulli RVs with success prob. p
- Number of arrivals in n time slots: binomial PMF
- Interarrival times: independent with geometric PMF
- Time of kth arrival: Pascal PMF of order k
- Independence and memorylessness
Limitation of the Bernoulli arrival model

Consider cars entering Stata Center parking garage
- Mark each 10-second interval with an entry a “success”
- Good model? (captures what is happening?)

... entering any parking garage in the world
- Mark each 10-second interval with an entry a “success”
- Good model? (captures what is happening?)
Definition of the Poisson process

- Defining characteristics:
 - **Time homogeneity**: Probability of \(k \) arrivals in an interval of duration \(\tau \) is some function \(P(k, \tau) \)
 - **Independence**: Numbers of arrivals in disjoint time intervals are independent
 - **Small interval probabilities**: For very small \(\delta \),

\[
P(k, \delta) \approx \begin{cases}
1 - \lambda \delta, & \text{if } k = 0; \\
\lambda \delta, & \text{if } k = 1; \\
0, & \text{if } k > 1,
\end{cases}
\]

where \(\lambda \) is called the **rate**
PMF of number of arrivals N_t

- Finely discretizing $[0, t]$, process is approximately Bernoulli
- N_t (of discrete approximation) is binomial
- Taking $\delta \to 0^+$ (or $n \to \infty$) allows approximation from L13:
 \[
P(k, t) = \frac{(\lambda t)^k e^{-\lambda t}}{k!}, \quad k = 0, 1, \ldots
 \]
 - (consider this exact)
- $\mathbb{E}[N_t] = \lambda t$, $\text{var}(N_t) = \lambda t$
Examples

Email arrives as Poisson process with rate $\lambda = 0.4$ per hour.

Recall general form $P(k, t) = \frac{(\lambda t)^k e^{-\lambda t}}{k!}, \ k = 0, 1, \ldots$

- $P(0 \text{ new msgs between noon and 12:30pm}) =$
- $P(1 \text{ new msg between noon and 12:30pm}) =$

- number of msgs between noon and 1pm \sim
- number of msgs between 1pm and 3pm \sim
- number of msgs between noon and 3pm \sim
Time of first arrival \(T \)

\[
F_T(t) =
\]

\[
f_T(t) =
\]

\[
P(T > t + s | T > t) =
\]
Time of kth arrival Y_k

- All interarrival times independent with exponential distribution: $f_T(t) = \lambda e^{-\lambda t}, \ t \geq 0$

- $Y_k = T_1 + T_2 + \cdots + T_k$

- Erlang PDF of order k: $f_{Y_k}(y) = \frac{\lambda^k y^{k-1} e^{-\lambda y}}{(k-1)!}, \ y \geq 0$
Bernoulli/Poisson correspondences

<table>
<thead>
<tr>
<th></th>
<th>Poisson</th>
<th>Bernoulli</th>
</tr>
</thead>
<tbody>
<tr>
<td>times of arrival</td>
<td>continuous</td>
<td>discrete</td>
</tr>
<tr>
<td>arrival rate</td>
<td>λ per unit time</td>
<td>p per trial</td>
</tr>
<tr>
<td>number of arrivals</td>
<td>Poisson PMF</td>
<td>binomial PMF</td>
</tr>
<tr>
<td>interarrival times</td>
<td>exponential PDF</td>
<td>geometric PMF</td>
</tr>
<tr>
<td>kth arrival time</td>
<td>Erlang PDF of order k</td>
<td>Pascal PMF of order k</td>
</tr>
</tbody>
</table>
Adding (merging) Poisson processes

- Merging independent Poisson processes gives a Poisson process

What is the probability that the next arrival comes from the first process?

- Sum of independent Poisson random variables is Poisson