
Today:
- Fitting sum of exponentials
- Sampling based on finite rate of innovation
- Fundamentals of scalar quantization
- Fundamentals of transform coding

Next time:
- Time-frequency localization (Chapter 6)
- [Omitting Sections 5.2-5.3]
- [Sections 5.4-5.6 deferred to later in semester, except as covered today]

Reading:
- Sections 4.6-4.7
- Portions of some of my old writings will be placed on Stellar

Exponential fitting

\[
x(t) = \sum_{k=0}^{K-1} c_k (u_k)^t \\
x_n = \sum_{k=0}^{K-1} c_k (u_k)^n
\]

Fitting exponentials to data is an *old* problem
- \(u_k\) on unit circle \(\Rightarrow\) estimating line spectra
- \(u_k\) not on unit circle is the “original” problem in chemistry, physics, … (e.g., Prony (1795))

Reconstruction of semilinear signal reduced to exponential fitting
Exponential fitting

\[x_n = \sum_{n=0}^{N-1} c_k(u_k)^n, \quad n = 0, 1, \ldots, N - 1 \]

\[X(z) = \sum_{n=0}^{\infty} \sum_{k=0}^{K-1} c_k(u_k)^n z^{-n} = \sum_{k=0}^{K-1} c_k z^{-u_k-1} \]

\[h_n * x_n = 0, \quad n = K + 1, \ldots, N - 1, \quad H(z) = \prod_{k=0}^{K-1} (1 - u_k z^{-1}) \]

- \(H(z) \) called the annihilating filter
- Need \(2K \) samples \(\{x_n\}_{n=0}^{2K} \) to solve for \(K \) unknowns \(\{h_n\}_{n=1}^{K} \)
- \(\{u_k\}_{k=0}^{K-1} \) are roots of polynomial \(H(z) \)

Basics of scalar quantization

OED: To approximate (a signal varying continuously in amplitude) by one whose amplitude is restricted to a prescribed set of discrete values.

Quantizers are most often uniform:
High-resolution analysis of uniform quantizer

\[D = \mathbb{E}[(X - q(X))^2] \]

\[\approx \sum_{i=1}^{N} \int_{y_i - \Delta/2}^{y_i + \Delta/2} (x - y_i)^2 f(x) \, dx \quad \text{neglecting overload} \]

\[\approx \sum_{i=1}^{N} f(y_i) \int_{y_i - \Delta/2}^{y_i + \Delta/2} (x - y_i)^2 \, dx \quad \text{by continuity} \]

\[= \frac{\Delta^2}{12} \sum_{i=1}^{N} f(y_i) \Delta \]

\[\approx \frac{\Delta^2}{12} \int_{y_{N+1}}^{y_{N+1} + \Delta/2} f(x) \, dx \]

\[\approx \frac{\Delta^2}{12} \quad \text{neglecting overload} \]

If \(\text{support}(f(x)) \subset \text{limiting granular region} \),

\[\lim_{\Delta \to 0} \frac{D}{\Delta^2/12} = 1 \]

High-res. analysis of general scalar quantizer

Consider \(K \)-cell quantization of \(X \in \mathbb{R} \) with smooth pdf \(f_X(x) \)

- optimal quantizer: regular, similarly-sized neighboring cells
- assume overload distortion is negligible
- quantizer described by (normalized) point density \(\lambda(x) \)

\(\Delta \lambda(x) \): approx. fraction of points in \([x - \frac{1}{2} \Delta, x + \frac{1}{2} \Delta] \)
High-res. analysis of general scalar quantizer

- express MSE using λ:
 \[D = \frac{1}{12K^2} \int \frac{f_X(x)}{\lambda^2(x)} \, dx \, o(1/K^2) \]

Fixed-rate quantization (minimize MSE given K)
- optimally, $\lambda(x) \sim f_X^{1/3}(x)$

Optimization of point density (fixed rate)

Minimizing $D \approx \frac{1}{12} \frac{1}{N^2} \int \frac{f(x)}{\lambda^2(x)} \, dx$:

Hölder’s inequality: When $\frac{1}{a} + \frac{1}{b} = 1$,

\[\int u(x)v(x) \, dx \leq (u(x)^a \, dx)^{1/a} (v(x)^b \, dx)^{1/b}, \]

with equality if and only if $u(x)^a = c \cdot v(x)^b$.
Optimization of point density (fixed rate)

Let \(u(x) = \left(\frac{f(x)}{\lambda^2(x)} \right)^{1/3} \), \(v(x) = \lambda^{2/3}(x) \), \(\alpha = 3 \), \(b = 3/2 \). Then

\[
\int \left(\frac{f(x)}{\lambda^2(x)} \right)^{1/3} \lambda^{2/3}(x) \, dx \leq \left(\int \frac{f(x)}{\lambda^2(x)} \, dx \right)^{1/3} \left(\int \lambda(x) \, dx \right)^{2/3}
\]

Distortion minimized by \(\lambda(x) = \frac{f^{1/3}(x)}{\int f^{1/3}(x') \, dx'} \)

\[
\delta(R) \approx \frac{1}{12} \left(\int f^{1/3}(x) \, dx \right)^3 2^{2-2R}
\]

for Gaussian

High-res. quantization: General variable-rate

With high-resolution approximations, optimal point density is constant.

Uniform quantization gives

\[
H(q(X)) \approx h(X) - \log \Delta,
\]

where \(h(X) = - \int f(x) \log f(x) \, dx \)

\[
\Rightarrow \Delta \approx 2^{h(X)} 2^{-R}
\]

\[
\Rightarrow \delta(R) \approx \frac{1}{12} \frac{2^{2h(X)}}{2\pi e\sigma^2} 2^{2-2R}
\]

for Gaussian

Comparing to fixed-rate quantization, only space-filling loss
(no oblongitis or point-density loss)
General terminology of source coding

input $x \in$ alphabet $A \subset \mathbb{R}^k$
lossy encoder $\alpha : A \to \mathcal{I}$
reproduction decoder $\beta : \mathcal{I} \to \hat{A} \subset \mathbb{R}^k$
lossless encoder $\gamma : \mathcal{I} \to \mathcal{F}$

partition $\mathcal{S} = \{S_i = \alpha^{-1}(i) : i \in \mathcal{I}\}$
(reproduction) codebook $\mathcal{C} = \{\beta(i) : i \in \mathcal{I}\}$ of points, codevectors, or reproduction codewords

Performance measures

distortion $d(x, \hat{x}) = \|x - \hat{x}\|^2 = \sum_{i=1}^{k} |x_i - \hat{x}_i|^2$
rate $R(\alpha, \gamma) = E[r(X)] = \frac{1}{k} E[\ell(\gamma(\alpha(X)))$]
average distortion $D(\alpha, \beta) = \frac{1}{k} E[d(X, \beta(\alpha(X)))$]

operational distortion-rate function
$\delta(R) = \inf_{(\alpha, \gamma, \beta) : R(\alpha, \gamma) \leq R} D(\alpha, \beta)$

operational rate-distortion function
$r(D) = \inf_{(\alpha, \gamma, \beta) : D(\alpha, \gamma) \leq D} R(\alpha, \gamma)$

operational Lagrangian (weighted r-d) function
$L(\lambda) = \inf_{(\alpha, \gamma, \beta)} D(\alpha, \beta) + \lambda R(\alpha, \gamma)$
Examples: 2-D uniform source

Effect of dimension

Performance improves with increasing dimension, but so does complexity. Only “space filling loss” is a fundamental limitation of the quantizer dimension. It decreases \textit{slowly}.

Losses for i.i.d. Gaussian source:
Linear approximation of random sources

Let \(x \in \mathbb{R}^N \) be jointly Gaussian with \(E[x] = 0 \) and \(E[xx^T] = R_x \).

(Gaussianity is for concreteness. We are using just second-order properties and constraining ourselves to linear approximation.)

How can we best approximate \(x \) with \(K < N \) terms?

Basic transform coding structure

![Diagram](image)

Transform codes have **constrained structure** for lower complexity:

- \(T \) and \(U \) are linear operators (\(N \times N \) matrices)
- Each \((\alpha_k, \beta_k, \gamma_k)\) is a scalar quantizer

Lower complexity as function of \(N \) \(\Rightarrow \) Use much larger \(N \)

Most audio and image compression is with transform codes.
Transform codes are constrained quantizers

Transform code

Transform code

Oblongitis loss here can be reduced by using a variable-length code

Standard transform coding results

[Huang & Schultheiss (1963)]

Let x be jointly Gaussian and assume the y_i's are independent and the α_i's are optimal fixed-rate quantizers.

Then optimally $U = T^{-1}$ and T is orthogonal.
Standard transform coding results

[See, e.g., Gersho & Gray (1992)]

Let \mathbf{x} be jointly Gaussian and assume $T^{-1} = TT^T = U$. Also assume high-rate approximations of fixed- or variable-rate quantizer performance.

Then T is optimally a KLT (y_i's independent).

More general transform coding result

Thm. 2 (2000): Let T be orthogonal and $U = T^{-1} = TT^T$. If $D_k = \sigma_k^2 \mu(R_k)$ for each k, a KLT is optimal. (The bit allocation is arbitrary.)

Proof 1: Every Jacobi step in diagonalizing R_x decreases D.

Proof 2: Let (R_1, R_2, \ldots, R_N) be any bit allocation. We wish to minimize $D = N^{-1} \sum_{k=1}^{N} \sigma_k^2 f(R_k)$ by manipulating the σ_k^2's. The vector $(\sigma_1^2, \sigma_2^2, \ldots, \sigma_N^2)$ lies in the convex polytope defined by the permutations of $\lambda(R_x)$. The minimum of D must be attained at a corner.