6.342 Lecture 21 — May 2, 2011

Today:
• Frames

Readings:
• Chapter 10 of *Fourier and Wavelet Signal Processing*

Definition 1.48 (Frame) The set of vectors \(\tilde{\Phi} = \{ \tilde{\varphi}_k \}_{k \in \mathcal{J}} \subset H \), where \(\mathcal{J} \) is finite or countably infinite, is called a frame for Hilbert space \(H \) when there exist strictly positive constants \(\lambda_{\text{min}} \) and \(\lambda_{\text{max}} \) (called frame bounds) such that, for any \(x \in H \),

\[
\lambda_{\text{min}} \|x\|^2 \leq \sum_{k \in \mathcal{J}} |(x, \tilde{\varphi}_k)|^2 \leq \lambda_{\text{max}} \|x\|^2. \tag{1.129}
\]

Definition 1.34 (Riesz Basis) The set of vectors \(\Phi = \{ \varphi_k \}_{k \in \mathcal{K}} \subset H \), where \(\mathcal{K} \) is finite or countably infinite, is called a Riesz basis for Hilbert space \(H \) when

(i) it is a basis for \(H \); and
(ii) there exist strictly positive constants \(\lambda_{\text{min}} \) and \(\lambda_{\text{max}} \) such that, for any \(x \in H \), the expansion of \(x \) with respect to the basis \(\Phi \),

\[
x = \sum_{k \in \mathcal{K}} \alpha_k \varphi_k,
\]

satisfies

\[
\lambda_{\text{min}} \|x\|^2 \leq \sum_{k \in \mathcal{K}} |\alpha_k|^2 \leq \lambda_{\text{max}} \|x\|^2. \tag{1.76}
\]
Operators Associated with Frames

\[\Phi : \ell^2(\mathcal{J}) \to H, \quad \text{with} \quad \Phi \alpha = \sum_{k \in \mathcal{J}} \alpha_k \varphi_k \]

\[\Phi^*: H \to \ell^2(\mathcal{J}), \quad \text{with} \quad (\Phi^* x)_k = \langle x, \varphi_k \rangle, \quad k \in \mathcal{J} \]

\[\lambda_{\min} I \leq \Phi \Phi^* \leq \lambda_{\max} I \]

Definition 1.49 (Tight Frame) The frame \(\Phi = \{\varphi_k\}_{k \in \mathcal{J}} \subset H \), where \(\mathcal{J} \) is finite or countably infinite, is called a tight frame, or a \(\lambda \)-tight frame, for Hilbert space \(H \) when its best frame bounds are equal, \(\lambda_{\min} = \lambda_{\max} = \lambda \).

For a \(\lambda \)-tight frame, (1.132) simplifies to

\[\Phi \Phi^* = \lambda I. \quad (1.133) \]

Theorem 1.50 (Tight Frame Expansions) Let \(\Phi = \{\varphi_k\}_{k \in \mathcal{J}} \) be a \(1 \)-tight frame for Hilbert space \(H \). Analysis of any \(x \) in \(H \) gives expansion coefficients in \(\ell^2(\mathcal{J}) \)

\[\alpha_k = \langle x, \varphi_k \rangle \quad \text{for} \ k \in \mathcal{J}, \quad \text{or}, \quad \alpha = \Phi^* x. \quad (1.136a) \]

Synthesis with these coefficients yields

\[x = \sum_{k \in \mathcal{J}} \langle x, \varphi_k \rangle \varphi_k \quad (1.137a) \]

\[= \Phi \alpha = \Phi \Phi^* x. \quad (1.137b) \]
Definition 1.52 (Dual pair of frames) The sets of vectors \(\Phi = \{ \varphi_k \}_{k \in J} \subset H \) and \(\tilde{\Phi} = \{ \tilde{\varphi}_k \}_{k \in J} \subset H \), where \(J \) is finite or countably infinite, are called a dual pair of frames for Hilbert space \(H \) when

(i) each is a frame for \(H \); and
(ii) for any \(x \) in \(H \),

\[
x = \sum_{k \in K} \langle x, \tilde{\varphi}_k \rangle \varphi_k \quad \text{(1.141a)}
\]

\[
= \Phi \tilde{\Phi}^* x. \quad \text{(1.141b)}
\]

Canonical Dual Frame

\[
\tilde{\Phi} = (\Phi \Phi^*)^{-1} \Phi
\]

\[
\tilde{\varphi}_k = (\Phi \Phi^*)^{-1} \varphi_k, \quad k \in J.
\]

Figure 10.7: Frames at a glance. Tight frames with \(\lambda = 1 \) and unit-norm vectors lead to orthonormal bases.
Robustness to additive noise

\[\hat{x} = F^\top \hat{\gamma} = F^\top (F x + \eta) = \tilde{F}^* (F x + \eta) = \sum_{k=1}^{M} \langle x, \varphi_k \rangle + \eta_k \tilde{\varphi}_k, \]

\[x - \hat{x} = \sum_{k=1}^{M} \langle x, \varphi_k \rangle \tilde{\varphi}_k - \sum_{k=1}^{M} \langle x, \varphi_k \rangle + \eta_k \tilde{\varphi}_k = - \sum_{k=1}^{M} \eta_k \tilde{\varphi}_k. \]

The expected squared-ℓ_2 error per component (mean-squared error) is

\[\text{MSE} = \frac{1}{N} E \| x - \hat{x} \|^2 = \frac{1}{N} E \left\| \sum_{k=1}^{M} \eta_k \tilde{\varphi}_k \right\|^2 = \frac{1}{N} E \left[\sum_{i=1}^{M} \sum_{k=1}^{M} \eta_i \eta_k \tilde{\varphi}_i^* \tilde{\varphi}_k \right] = \frac{1}{N} \sum_{i=1}^{M} \sum_{k=1}^{M} \delta_{i,k} \sigma^2 \tilde{\varphi}_i^* \tilde{\varphi}_k = \frac{1}{N} \sigma^2 \sum_{k=1}^{M} \| \tilde{\varphi}_k \|^2, \]

Goyal, Kovacevic & Kelner (2001)

\[\text{MSE} = \frac{1}{N} \sigma^2 \sum_{k=1}^{M} \| \tilde{\varphi}_k \|^2 = N^{-1} \sigma^2 \text{tr}(\tilde{F} \tilde{F}^*) = N^{-1} \sigma^2 \text{tr}((\tilde{F}^* \tilde{F})^{-1}) = N^{-1} \sigma^2 \text{tr}(V \Lambda^{-1} V^*) = N^{-1} \sigma^2 \text{tr}(\Lambda^{-1}), \]

where $\tilde{F}^* F = V \Lambda V^*$ is the spectral decomposition of $\tilde{F}^* F$. With the $\{\lambda_i\}_{i=1}^{N}$ denoting the eigenvalues of $\tilde{F}^* \tilde{F}$, we have

\[\text{MSE} = \frac{1}{N} \sigma^2 \sum_{i=1}^{N} \frac{1}{\lambda_i} \quad (19) \]

Property 2.2. For any frame, the sum of the eigenvalues of $\tilde{F}^* F$ equals the sum of the lengths of the frame vectors. In particular, for a uniform frame the sum of the eigenvalues equals M all vectors of unit norm

Proof. Denote the eigenvalues by $\{\lambda_i\}_{i=1}^{N}$. Using elementary properties of the trace and the definition of F,

\[\sum_{i=1}^{N} \lambda_i = \text{tr}(\tilde{F}^* F) = \text{tr}(F F^*) = \sum_{i=1}^{M} \varphi_i^* \varphi_i = \sum_{i=1}^{M} \| \varphi_i \|^2. \]

Goyal, Kovacevic & Kelner (2001)
Robustness to additive noise

Theorem 3.1. When encoding with a uniform frame and decoding with linear reconstruction (16), under the noise model (14), the MSE is minimum if and only if the frame is tight.

Theorem 3.2. Consider linear reconstruction (16) with noise η satisfying (14) and define the mean-squared error (MSE) by $N^{-1}E\|x - \hat{x}\|^2$. For any frame, the MSE is given by (19) and satisfies

$$B^{-1}\sigma^2 \leq \text{MSE} \leq A^{-1}\sigma^2.$$ (20)

For a uniform frame,

$$\frac{N\sigma^2}{M} \leq \text{MSE} \leq A^{-1}\sigma^2.$$ (21)

For a uniform tight frame,

$$\text{MSE} = \frac{N}{M}\sigma^2 = r^{-1}\sigma^2.$$ (22)

Goyal, Kovacevic & Kelner (2001)

Robustness to erasures

Theorem 4.4. Consider encoding with a uniform frame and decoding with linear reconstruction (16), under noise model (14). The MSE averaged over all possible erasures of one frame element,

$$\overline{\text{MSE}_1} = \frac{1}{M} \sum_{k=1}^{M} \text{MSE}_{k|1},$$

is minimum if and only if the original frame is tight. Also, a tight frame minimizes the maximum distortion caused by one erasure

$$\max_{k=1,2,\ldots,M} \text{MSE}_{[k|1].}$$

Goyal, Kovacevic & Kelner (2001)
Robustness to bounded noise and quantization

An estimate \hat{x} is called consistent with $\hat{y} = Q(Fx)$ when $Q(F\hat{x}) = \hat{y}$.

The concept of consistency can be used for both deterministic and random quantization.

In a variety of scenarios, consistency reduces MSE from $O(\frac{N}{M})$ to $O((\frac{N}{M})^2)$.

Fig. 3. Illustration of consistent reconstruction. Goyal, Vetterli & Thao (1998)
Robustness to bounded noise and quantization

TABLE I
ALGORITHM FOR CONSISTENT RECONSTRUCTION FROM A QUANTIZED FRAME EXPANSION

1. Form
\[\overline{F} = \begin{bmatrix} F & F' \\ -F' & F \end{bmatrix} \quad \text{and} \quad \overline{y} = \begin{bmatrix} \frac{1}{2} \Delta + \hat{y} \\ \frac{1}{2} \Delta - \hat{y} \end{bmatrix}. \]

2. Pick an arbitrary cost function \(c \in \mathbb{R}^N \).
3. Use a linear programming method to find \(\hat{x} \) to minimize \(c^T \hat{x} \) subject to \(\overline{F} \hat{x} \leq \overline{y} \).

(Algorithm written for \(Q \) being a quantizer that rounds to nearest multiple of \(\Delta \).)

Goyal, Vetterli & Thao (1998)

Fig. 4: Experimental results for reconstruction from quantized frame expansions. Shows \(O(1/r^2) \) MSE for consistent reconstruction and \(O(1/r) \) MSE for classical reconstruction.

1. A sequence of frames corresponding to oversampled A/D conversion, as given by (6). This is the case in which we have proven an \(O(1/r^2) \) SE upper bound.
2. For \(N = 3, 4, \) and 5, Hardin, Sloane, and Smith have numerically found arrangements of up to 130 points on \(N \)-dimensional unit spheres that maximize the minimum Euclidean norm separation [14].
3. Frames generated by randomly choosing points on the unit sphere according to a uniform distribution.

Goyal, Vetterli & Thao (1998)
6.342 Wavelets, Approximation, and Compression

May 2, 2011

Figure 10.4: A 3-channel filter bank with sampling by 2 implementing a general frame expansion.
Figure 10.16: Sampling grids corresponding to the time-frequency tilings of (a) the DWT (points—nonredundant) and (b) the oversampled DWT (squares—redundant).

Figure 10.17: The synthesis part of the filter bank implementing the oversampled DWT. The samplers are omitted at all the inputs into the bank. The analysis part is analogous.

Figure 10.18: The synthesis part of the equivalent filter bank implementing the oversampled DWT with $J = 3$ levels. The analysis part is analogous.
Figure 10.23: The synthesis part of the equivalent 3-channel filter bank implementing the shift-invariant DWT with $J = 3$ levels. The analysis part is analogous and filters are given in (10.92). This is the same scheme as in Figure 10.18 with all the upsamplers removed.

Figure 10.24: Sampling grid corresponding to the time-frequency tiling of the shift-invariant DWT (points—nonredundant, squares—redundant).