Spring, 2011

Class 16
Routing

• Choose the path on which a message from u to v will be sent

• The goal is to estimate the latency between each pair of nodes

• Consider a complete graph
 – But edges have different latencies
Today

• Triangulation and embedding using small sets of beacons, Kleinberg, Slivkins and Wexler

• Towards fast decentralized construction of locality-aware overlay networks, Slivkins
Motivation

• Calculating latencies (round-trip) in a Network
• Networking algorithms calculate latency
 – Cannot measure all distances
• Latency is almost a Metric
 – Non-negative: \(d(x,y) \geq 0 \) and \(d(x,x)=0 \)
 – Symmetric: \(d(x,y) = d(y,x) \)
 – Triangle inequality: \(d(x,y) \leq d(x,z)+d(z,y) \)
Beacon-Based Approach

• Feasible to measure only a small number of distances
• Choose uniformly at random a constant number of nodes (beacons) and measure all distances to them
• Reconstruction by triangulation
 – Bound other distances by triangle inequality
Reconstruction by Triangulation

- Distance d_{uv} between points u and v
- S is the set of beacons

$$\max_{b \in S} |d_{ub} - d_{vb}| \leq d_{uv} \leq \min_{b \in S} d_{ub} + d_{vb}$$

- **Algorithm**: Node u measures distance to all beacons. Exchanges data with node v to estimate d_{uv}
- Distortion $1+\delta$: max of ratio between upper and lower bounds
Slack

• Cannot always approximate all distances
 – Example: for same d_{uv}, difference between d_{ub} and d_{vb} can be small, but sum can be small or large

• Slack - approximate with distortion $1+\delta$ all but an ϵ-fraction of distances
Goal

• Given a metric M, and $\epsilon, \delta > 0$: is there a constant number (independent of $|M|$) of beacons that suffice to get triangulation with distortion $1 + \delta$ and slack ϵ?

• Consider M such that all distances are 1
 – Lower bound of triangulation is always 0…

• New goal: find natural metrics for which this can be done
s-doubling Metrics

• $B_u(r) = \{v : d_{uv} \leq r\}$

• In an s-doubling metric: can be covered by at most 2^s balls of radius $r/2$
Theorem

• If M is s-doubling, there is a constant number of randomly chosen beacons that achieve distortion $1+\delta$ and slack ε with probability $1-\gamma$
 – Constant: depends only on δ, ε, γ, s
 – Does not depend on the number of points $|M|$
Proof

• Let \(r_u(\varepsilon) \) be the minimal \(r \) such that \(|B_u(r)| \geq \varepsilon n\)

• Fix \(u \), and \(r = r_u(\varepsilon/3) \). At most \(n\varepsilon/3 \) have distance \(< r\)

 – We will ignore the estimation for these points (small \(\varepsilon/3 \) fraction)

• Consider a large ball \(B = B_u(2r/\delta) \)

• The probability of having a beacon in \(B_u(r) \), \(\Pr[\exists b \in B_u(r)] \), is almost 1

 for a constant number of random beacons

• Take \(v \notin B \) and check how good will its estimation be:

 \[d_{vb} - d_{ub} \leq d_{uv} \leq d_{vb} + d_{ub} \]
Proof

• Consider a large ball $B = B_u(2r/\delta)$
• Take $v \notin B$ and check how good will its estimation be:

 \[d_{vb} - d_{ub} \leq d_{uv} \leq d_{vb} + d_{ub} \]

• $d_{vb} + d_{ub} \leq (d_{uv} + d_{ub}) + d_{ub} \leq d_{uv} + 2d_{ub} \leq d_{uv} + 2r \leq d_{uv}(1 + 2r/d_{uv}) \leq d_{uv}(1 + \delta)$

• $d_{vb} - d_{ub} \geq (d_{uv} - d_{ub}) - d_{ub} \geq d_{uv} - 2d_{ub} \geq d_{uv} - 2r \geq d_{uv}(1 - 2r/d_{uv}) \geq d_{uv}(1 - \delta)$
Proof

• Now take \(v \in B \setminus B_u(r) \)
• \(M \) is \(s \)-doubling: \(B \) can be covered by \(s'=(2/\delta)^{2\log s} \) balls of radius \(r'=\delta r/2 \) (invoke the doubling property multiple times)
• Consider balls with at least \(n\epsilon/3s' \) points
 – Ignore remaining points: at most \(n\epsilon/3 \) ignored
• If each ball contains a beacon: bounds are within factor \((1\pm\delta)\) of value
 • \(d_{ub}+d_{vb} \leq (d_{uv}+d_{vb}) + d_{vb} \leq 2d_{vb} \leq d_{uv}(1+\delta) \)
 • \(d_{ub}-d_{vb} \geq (d_{uv}-d_{vb})-d_{vb} \geq d_{uv}/2 \geq d_{uv}(1-\delta) \)
Proof

• If each ball contains a beacon: bounds are within factor \((1\pm\delta)\) of value
• \(\Pr[\exists b \in B_v(r') \text{ for all but a fraction of } \varepsilon/3 \text{ balls}]\) is almost 1 for a constant number of random beacons \(k=O((s'/\varepsilon)(\log(1/\varepsilon)))\)
• We ignore the remaining nodes within the \(\varepsilon/3\) fraction of balls
• This gives that all but at most an \(\varepsilon\) fraction of pairs nodes have estimations within a factor of \((1\pm\delta)\)
Lemma

- We implicitly proved:

\[M \text{ is } s\text{-doubling, fix } \varepsilon \text{ and } \delta. \text{ Let } \\
\varepsilon' = (\varepsilon/2)(\delta/2)^{2\log s}. \text{ Then there is a set of pairs which includes all but a fraction of } \varepsilon \text{ of all pairs } (u,v) \text{ for every } u, \text{ with } \\
\min(r_u(\varepsilon), r_v(\varepsilon')) \leq \delta d_{uv} \]
Distributed Approach

• Beacons perform $O(n)$ measurements
 – A lot!
• Can nodes perform fewer measurements?
• Fully distributed algorithm
 – $\text{polylog}(n)$ for each node
Algorithm (for node u)

• Select k neighbors uniformly at random and measure distances. Decide with probability k/n to be a beacon.

• If u is a beacon then announce to neighbors
 – Sort measurements (x_1, \ldots, x_k)
 – Let $r_b = x_{2\epsilon'k}$ (estimation of $r_b(\epsilon')$)
 – Send $(b, r_b, 0)$ to all neighbors

• Upon receiving (b, r_b, i) from v
 – Estimate d_{ub} by $d_{uv} \pm 2ir_b$
 – If no previous message $(b, r_b, <i)$
 • and if $d_{uv} \leq 2r_b$
 • and $i < \log n$
 – then forward $(b, r_b, i+1)$ to neighbors

$\epsilon' = (\epsilon/2)(\delta'/2)^{2\log s}$
$\delta' = O(\delta/\log n)$
Algorithm (for node u)
Complexity

• Each message of beacon b is forwarded at most $K = \text{clog}^2 n$ times
• u broadcasts message of b at most K times
• u receives message of b at most K times from each of $O(k)$ neighbors
• We take $k = O(\text{polylog} n)$

➢ Total: $\text{polylog}(n)$ work for each node
Analysis

• Estimation d_{ub} by $d_{uv} \pm 2ir_b$ is valid (at least as large as real value d_{ub}) by induction: we got message only from node v with $d_{uv} \leq 2r_b$ whose estimation was $d_{vb} \leq 2(i-1)r_b$

• For every beacon b, by Chernoff Bounds:
 – At least $2\varepsilon'k$ neighbors with distance $r_b(4\varepsilon')$ from b
 – At most $2\varepsilon'k$ neighbors with distance $r_b(\varepsilon')$ from b

• We get: $r_b(\varepsilon') \leq r_b \leq r_b(4\varepsilon')$
Analysis

• Claim: The ball $B=B_b(r_b(\varepsilon'))$ has diameter $\leq K$ in the induced graph of random neighbors

• Proof:
 – With high probability u has ≥ 3 neighbors in B
 • Also for $B(r(\varepsilon'))$ of every other node
 – The graph induced by B contains a constant degree expander

➢ Diameter $\leq c\log n$
Analysis

• The ball $B = B_b(r_b(\varepsilon'))$ has diameter $\leq K$ in the induced graph of random neighbors
• w in B will estimate $d_{wb} \leq 2r_bK$
• u has a neighbor w in B
 – With high probability
• u estimates d_{ub} by $d_{uw} \pm 2r_bK$
 – At most $d_{ub} \pm 3r_bK$

➢ Estimations are within $O(r_bK)$
Wrap Up

- Estimations are within $O(r_b K)$
 - We proved: M is s-doubling, fix ε and δ'. Let $\varepsilon' = (\varepsilon/2)(\delta'/2)^{2\log s}$. Then there is a set of pairs which includes all but a fraction of ε of all pairs (u, v) for every u, with $\min(r_u(\varepsilon), r_v(\varepsilon')) \leq \delta'd_{uv}$
 - W.h.p there is a beacon b in B
 - $B \subseteq B'$: $r_b \leq r_b(4\varepsilon') \leq 2r$
 - d_{uv} estimated with error $O(rK)$
 = $O(\delta d_{uv}/\log n)(c\log n)$
 = $O(\delta d_{uv})$

![Diagram showing beacon b, radius $2r$, and estimated error radius $r = O(\delta d_{uv}/\log n)$](image)
Next

Distance Labeling

• We are interested in **distance labeling**
 – Assign a short label to every node
 – Such that the distance between each pair of nodes can be determined by their labels
 • Or approximated by their labels
• This is useful for a **routing scheme**:
 – According to the short labels, nodes decide how to route messages
 • Hopefully fast
 – **Stretch**: the maximum ratio (over all pairs of nodes) between the length of a routing path and the length of the shortest path
 – **Space**: size of local memory used, and routing headers attached to the packets. **Compact routing**: polylog(n) space
 – Two extremes show the tradeoff between stretch and space: full distance matrix, flooding
Distance Labeling

- We just saw one solution to distance labeling
 - The estimate gave us upper and lower bounds on the true distance by using the triangle inequality
 - But we had slack: some small fraction of pairs may not have good estimates

- Next: an algorithm for approximate distance labeling
 - With a guaranteed \((1+\delta)\)-approximation for the distances
 - Without slack
Grid Dimension

• The grid dimension of a metric is the infimum of all α such that for any $x \geq 2$ the cardinality of any ball is at most x^α times smaller than the cardinality of a ball x times the radius.
 – This abstracts a useful property of d-dimensional grids (with $\alpha = d + O(1)$).

• Bounded grid dimension \Rightarrow bounded doubling dimension
Assumptions

- Let \((V, d, M)\) be a metric with grid dimension \(\alpha\) and polynomially bounded aspect ratio \(\Delta\).

- Each node knows \(\alpha\) and \(\log(n \Delta)\) up to a constant factor.

- Each node has some outgoing links that collectively induce a \(d\)-degree undirected graph with expansion \(\gamma\) such that \(d/\gamma = \log^{O(1)} n\).

- Each node knows this number up to a constant factor.

- \(\delta\) in \((0, \frac{1}{2})\) is the stretch parameter.

This is basically an expander. Can be obtained whp by having each node sample a constant number of nodes as neighbors.
Main Theorem

• There exist a randomized distributed algorithm that with high probability constructs a \((1+\delta)\)-approximate triangulation of order \(O(k\log n)\). The total running time is at most \((\delta^{-\alpha} \cdot \log n)^{O(1)}\).
Rings of neighbors

• Assumption: smallest distance is 1 and largest is Δ (diameter)

• Notation: $B_{ui} = B_u(\Delta/2^i)$

• **Rings of neighbors**: a structure in which for every $1 \leq i < \log \Delta$, each node u has a link to k other nodes in B_{ui}, denoted $X_{ui}^{(i)}$ and called the i-th ring neighbors of u

• $\Delta/2^i$ is the **radius** of the ring, k its **cardinality**
Rings of neighbors

- Notation: $B_{ui} = B_u(Δ/2^i)$
- **Rings of neighbors**: a structure in which for every $1 \leq i < \log Δ$, each node u has a link to k other nodes in B_{ui}, denoted $X_{ui}^{(j)}$ and called the i-th ring neighbors of u.
Randomized rings of neighbors

• A randomized algorithm for constructing rings of neighbors induces a joint probability distribution on the variables $X_{ui}^{(j)}$.

• This distribution is called **randomized rings of neighbors (k-RRN)** if these random variables are mutually independent and distributed near-uniformly on the respective balls B_{ui}.
k-RRN Algorithm

• There exists a randomized distributed algorithm that for any natural number k with high probability constructs k-RRN on (V,d_M) in time $O(k)(2^\alpha \cdot \log n)^{O(1)}$
 – We will not show the algorithm and proof
A directed graph G is called \textit{δ-zooming}, for some δ in $(0, 1)$, if for any two nodes u, v, node u has an out-link (u, w) such that w lies within distance δd_{uv} from v.

\begin{itemize}
 \item A directed graph G is called \textit{δ-zooming}, for some δ in $(0, 1)$, if for any two nodes u, v, node u has an out-link (u, w) such that w lies within distance δd_{uv} from v.
\end{itemize}
δ-hierarchical node labeling

- A **δ-hierarchical node labeling** of order k is a labeling of each node by one or more integers in $\{0, \ldots, \log\Delta - 1\}$ such that for each node u and each label i we have
 - There is at least one label-i node in $B_u(r)$
 - There are at most k label-i nodes in $B_u(2r)$

- $r = \Delta / 2i$
k-RRN => δ-zooming and δ-hierarchical node labeling

• There exists a randomized distributed algorithm that with high probability in time $(\delta^{-\alpha} \cdot \log n)^{O(1)}$ constructs
 – A δ-zooming directed graph on V of degree $\delta^{-O(\alpha)} \cdot \log^2 n$
 – A δ-hierarchical node labeling on V of order $\delta^{-O(\alpha)} \cdot \log n$
Proof Idea

• Use the k-RRN algorithm with ring cardinality $k = \delta^{-O(\alpha)} \cdot \log n$
 – The directed graph with an edge for each node u and each node $X_{ui}^{(j)}$ is a δ-zooming directed graph on V of degree $\delta^{-O(\alpha)} \cdot \log^2 n$, whp
 – Node u assigns label i to itself if and only if it is one of its own ring-i neighbors. This is a δ-hierarchical node labeling on V of order $\delta^{-O(\alpha)} \cdot \log n$, whp
δ-hierarchical beacon network

• A δ-hierarchical beacon network of order k is a δ-hierarchical node labeling of order k such that for each node u, each label 1 ≤ i < \log \Delta, and \(r = \frac{\Delta}{2^i} \) we have
 – Node u has an i-beacon-link to some label-i nodes in \(B_u(2r) \), including all label-i nodes in \(B_u(r) \).
 – For each such beacon-link \((u,w) \), node u knows i, the address of w, and (1+δ)-approximate estimate of \(d_M(u,w) \).

• This definition leads to a triangulation
δ-hierarchical beacon network => Triangulation

• Lemma: For any δ in (0, 1/4), any δ-hierarchical beacon network of order k is a (1 + O(δ))-approximate triangulation of order O(k log n).
• Proof:
 • The beacon set of a given node u consists of all nodes to which u has a beacon-link. For each label 1 ≤ i < logΔ there are at most k such nodes => the beacon set has size O(k log n)
 • Fix a pair (u, v) and define the distance scale as the smallest i such that r = Δ /2^i ≥ d_{uv}/(1 − δ)
 • Then there exists a label-i beacon b in B_v(δr)
 • Then d_{ub} ≤ d_{uv} + δr ≤ r, so node b is in the beacon sets of both u and v
δ-hierarchical beacon network =>
Triangulation

• Lemma: For any δ in (0, 1/4), any δ-hierarchical beacon network of order k is a (1 + O(δ))-approximate triangulation of order O(k \log n).

• Proof cont.:
• Node b is in the beacon sets of both u and v
• Let $D_u(b)$ and $D_v(b)$ be the (1+δ)-approximate upper bounds on d_{ub} and d_{vb}, respectively

It follows that

\[D_v(b) \leq (1+\delta)d_{vb} \leq (1+\delta)\delta r \leq (1+2\delta)d_{uv} \]
\[D_u(b) \leq (1+\delta)d_{ub} \leq (1+\delta)(\delta r + d_{uv}) \leq (1+2\delta)d_{uv} \]
\[D_u(b) \geq (1-2\delta)d_{uv} \]
(G,s,r,δ)-Broadcast

• A protocol in which a message is sent from s over the directed graph G and reaches all nodes in $B_s(r)$ by $(1+δ)$-stretch paths
 – And does not go too far from $B_s(r)$
Main Theorem

• There exist a randomized distributed algorithm that with high probability constructs a \(\delta \)-hierarchical beacon network of order \(k = \delta^{-o(\alpha) \cdot \log n} \), and hence a \((1+\delta)\) -approximate triangulation of order \(O(k \log n) \). The total running time is at most \((\delta^{-\alpha} \cdot \log n)^{O(1)}\)
Proof of Main Theorem

• We have a δ-zooming directed graph G^* with degree $k = \delta^{-O(\alpha)} \cdot \log n$ and a δ-hierarchical node labeling L with order $k = \delta^{-O(\alpha)} \cdot \log n$.

• Each node u starts a (G,u,r,δ)-broadcast for $r = \Delta / 2^i$

• Each node w in $B_u(r)$ receives this broadcast and gets a $(1+\delta)$-approximation estimate of d_{uw}

=> We constructed a δ-hierarchical beacon network of order k
Proof of Main Theorem cont.

- L_{uv}^i is the load on u by the (G,u,r,δ)-broadcast
- $L_{uv}^i = 0$ for every node v not labeled i
- There are at most k label-i nodes in $B_u(2r)$
- $S_{ui} = \text{the set of all such nodes}$
- $L_{uv}^i = O(k)$ if v is in S_{ui}, and $L_{uv}^i = 0$ otherwise
- The load on u is therefore

\[\Sigma_{vi} L_{uv}^i \leq \Sigma_i O(k) |S_{ui}| \leq O(k^2 \log n) \]