Clustering - Grouping objects based on similarity as quantified by a metric

- Objects sufficiently similar to one another are assigned to the same cluster
- Objects in different clusters are further apart

Some data is relatively straightforward and different people would cluster them similarly.

How would you make 2 clusters from this?
Useful — Very common data analysis tool
- Scientific data from wide range of fields
- Medical Data — Patient diagnosis
- Identify patterns of consumer behavior
- Categorize music, movies, images, genes, etc

Conceptually related to
- Unsupervised learning — notion that objects that produce similar measurements may share some intrinsic property
- Dimensionality reduction

For some application specialized distance metrics and/or data transformations may be required.

Problem Statement:

Given: Instance data \(D = \{ \vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n \} \)

Number of desired clusters, \(k \)

Distance metric \(d(\vec{x}_i, \vec{x}_j) \)

Output: Assignment of instance data \(D \) to clusters \(\{ C_1, \ldots, C_k \} \)
Hierarchical Agglomerative Clustering

Main Idea - Progressively grow graph representing cluster set.

- Initially each object (vertex) in own cluster
- Add edges to create one new cluster by joining two previous clusters
- Stop when have k clusters

Algorithm - also called single-linkage clustering

1) \(H \) is a graph with one vertex for each object and no edges
2) Compute distances between all pairs of objects
3) Sort pairs of objects by distance
 \[d(u_i, v_i) \leq d(u_2, v_2) \leq d(u_3, v_3), \ldots \leq d(u_m, v_m) \]
4) Loop over \(i = 1 \) to number of distances \(m \)
 - If \(u_i \) & \(v_i \) in different clusters (different connected components)
 \[\rightarrow \] Merge their clusters
 \[\rightarrow \] Insert the edge \((u_i, v_i)\) into \(H \)
 - Exit loop and stop when only \(k \) clusters left
Running Time

Step 1 - Initialize data structure → \(n \) MAKE-SETs
Step 2 - all distances \(\Theta(n^2) \)
Step 3 - sort \(\rightarrow \Omega(n^2 \log n^2) = \Omega(n^2 \log n) \)
Step 4 - loop \(n^2 \) times
\[
\frac{n(n-1)}{2} \quad 2 \text{ FIND-SETs} \\
\quad 1 \text{ UNION} \\
\]
Overall \(\Theta(n^2 \log n) \)

Correctness

Usually we argue correctness here. In this case we didn't state exactly the properties our clusters should have, except that there are \(k \) of them and that they represent nearest-distance based grouping. So here we'll discuss instead the properties of this clustering and consider other possibilities.

For \(k=1 \), this is exactly Kruskal's MST algorithm (except here we compute all distances and there we are given edge weights).

For \(k>1 \), we produce a graph that is an MST with \(k-1 \) costliest edges (cheapest edges) removed.
Example

```
\[ \text{Example graph: shortest distance between two clusters in final graph.} \]
```

Claim: Output is a k-clustering of maximum "spacings".

Proof

Observe that Output $\mathcal{C} = \langle C_1, \ldots, C_k \rangle$ has spacings d^*, which is distance of first pair not considered by algorithm. Observe further that all edges in H appeared earlier in the heap and so have distances $\leq d^*$.

Consider different clustering $\mathcal{C}' = \langle C'_1, \ldots, C'_k \rangle$

$\Rightarrow \exists C_r$ that is not a subset of any C'_s in \mathcal{C}'

$\& \exists \pi, \beta \in C_r$ such that $\pi \in C'_s \neq \beta \in C'_r$
Output adds $p_i \rightarrow p_j$ (orange) path to H before stopping, so each orange edge $e \leq d^*$ \implies d(p_i, p_j) \leq d^*$, so spacing of $C^i \leq d^*$.

\[\therefore\] any other clustering with k clusters has smaller or equal spacing.

Alternative forms of Hierarchical Agglomerative Clustering vary the distance criterion used to find closest clusters to merge.

This is the example we have been discussing.

\[\begin{align*}
\text{MIN:} & \quad d_{\text{min}}(C_i, C_j) = \min_{x \in C_i, y \in C_j} d(x, y) \\
\text{MAX:} & \quad d_{\text{max}}(C_i, C_j) = \max_{x \in C_i, y \in C_j} d(x, y) \\
\text{MEAN:} & \quad d_{\text{mean}}(C_i, C_j) = \frac{1}{|C_i| \cdot |C_j|} \sum_{x \in C_i, y \in C_j} d(x, y) \\
\text{CENTROID:} & \quad d_{\text{centroid}}(C_i, C_j) = d\left(\frac{1}{|C_i|} \sum_{x \in C_i} x, \frac{1}{|C_j|} \sum_{y \in C_j} y\right)
\end{align*}\]

\[\rightarrow\] Other algorithms needed for other criteria

\[\rightarrow\] These other criteria tend to produce different clusters

\[\rightarrow\] Hierarchical Agglomerative Clustering tends to perform worse for higher-dimensional datasets.
A Different Approach: Min-Radius Clustering

Given: 1) Set of points \(r \in V \) with \(V \subseteq \mathbb{R}^m \) so triangle inequality satisfied
2) Number of clusters \(k \), cluster radius \(r \)

Find: Subset of points \(C \subseteq V \) [cluster centers] of size \(k \) s.t. \(\forall r \in V \) is within distance \(r \) of some element of \(C \).

\[
F[C] = \max_{r \in V} \min_{c \in C} d(r, c)
\]

Cost of clustering according to \(C \)

Single point most distant from its cluster center
Idea:

Imagine each \(v \in V \) as the center of a cluster, so \(S_v \leftarrow \) points in \(V \) within distance \(r \) of \(v \).

From this collection of sets \(S_1, S_2, \ldots, S_n \) can we find a subcollection of size \(k \) \(C_1, C_2, \ldots, C_k \) s.t. \(\bigcup_{j=1}^{k} S_j = V \) ?

This corresponds to Set Cover, which is NP-hard.

So does this mean \(k,r \)-clustering is NP-hard?

Not necessarily, as the reduction is in the wrong direction (but it is known to be NP-hard).

However, we can use approximate algorithm for Set Cover [Lecture 18] for approximate \(k,r \)-clustering.

- Greedily choose set with largest coverage until all points covered
- \(d \)-approximate \(d = \left(\log n + 1 \right) \# \text{ of sets} \)
- Running time depends on data structure

If there is a set cover of size \(k \), our output will be of size \(\leq k \left(\log n + 1 \right) \)

So this algorithm gives correct \(r \) but approximates \(k \).
Alternatively, could strictly meet k requirement but approximate.

Assuming points in V are k,v_r-clusterable, then this algorithm outputs a k,v_r cluster.

$i \leftarrow 0$

While V not empty:

$i \leftarrow i + 1$

pick arbitrary $v \in V$

define cluster C_i be all points within $2r$ of v

$V \leftarrow V - C_i$

Output $C_1 ... C_i$

Runtime: Time to compute all distances $O(n^2)$

Claim: After k passes through loop, V will be empty

Corollary: $O(nk)$ run time by only computing distances needed

Proof of Claim: Let $G^* = \{C_1^*, ..., C_k^*\}$ be k,v_r clustering with centers $c_1, ..., c_k$. For each C_i^* and any 2 points $u,v \in C_i^*$

d(u,v) \leq d(u,c_i) + d(c_i,v) \leq 2r$

Once algorithm picks a $v \in C_i^*$, all other points in C_i^* will go into the same cluster. In each round will pick point from new cluster ⇒ After k rounds, no points left.