Plan:
- Introduction to TSP
- 2-approximation of TSP
- 1.5-approximation of TSP

Introduction
(We will assume all graphs are undirected)
A few terminologies, given a graph:
- Hamiltonian path: visits each vertex in G exactly once (can miss edges)
- Eulerian path: visits each edge in G exactly once (can visit a node many times)
- Hamiltonian/Eulerian cycle: same definition as Ham/Euler path but start node = end node

Complexity
- Given graph G, finding a Hamilton cycle/path are NP-complete
- Eulerian cycle exists iff every node has even degree.
- Eulerian path exists iff all but 2 nodes have even degrees. And they are the start/end points.
Travelling Salesman Problem

On an undirected, weighted graph G, find a Hamiltonian cycle of minimum total weight (sort of a generalization of Hamiltonian cycle problem on weighted graphs).

Just like in Hamiltonian cycle, TSP is \textit{NP-complete}.

We will work with a special variant of TSP called metric-TSP, where edge weights satisfy the triangle inequality: $W(A, B) \leq W(A, C) + W(C, B)$.

Note: If G is connected, this restriction forces G to be complete, since if A, B are not connected by an edge, $W(A, B) = \infty$, and the triangle inequality will not be satisfied.

We will just work with complete graphs.

Metric-TSP is also \textit{NP-complete}.

\textbf{2-approximation for metric-TSP}

\underline{Step 1:} find the MST T of G.
Claim: $W(T) < W(OPT)$, if OPT is the optimal solution of TSP.

Proof: OPT is a cycle going through all nodes. Removing any edge e from OPT yields a spanning tree S, whose weight is no less than the minimum spanning tree T.

$W(T) \leq W(S) = W(OPT) - W(e) < W(OPT)$.

Step 2: Starting from any node in T, do a DFS, traversing every edge in T twice.

$\pi = ACDCEFECBAC$

This gives us a path π and $W(\pi) = 2W(T) < 2W(OPT)$.

But π is not a Ham cycle since some nodes are visited many times.

Step 3: Convert π into a legit Ham cycle π_0 via "short cutting".

Idea: We skip the repeated nodes in π, only write down a node when we first encounter it.
\[\pi = ACDECFCBACA \]
\[\pi_0 = ACDDEFBA \]

Clearly, \(\pi_0 \) is a ham cycle and \(W(\pi_0) < W(\pi) \) since whenever we skip, say \(D \to E \) instead of \(D \to C \to E \), we save distance due to triangle inequality.

Thus, \(W(\pi_0) < 2 \cdot W(\text{OPT}) \), a 2-approximation.

2-approximation for metric TSP (Christofides Alg)

Step 1 find the MST \(T \) of \(G \). Now, instead of converting \(T \) into a tour by traversing every edge twice in a DFS, we will do something better.

Step 2 Identify nodes of odd edge degree in \(T \), call this set \(O \).

Claim: \(|O| \) must be even.
Theorem: \(\sum_{v \in \text{nodes}} \deg(v) = 2 \times \text{(number of edges)} \)](\text{even})

If there are an odd number of nodes with odd degrees, the sum will be odd.

Step 3: Find the minimum weight perfect matching \(M \) of \(D \) in the original complete graph.

(Recall we can find max bipartite matching w flow, general matching can also be done in poly time.) We will show \(w(M) \leq \frac{1}{2} w(\text{OPT}) \) at the end.

Step 4: Look at \(T + M \), all nodes now have even degree. Thus, there exists an Eulerian tour \(\pi \) with weight:

\[w(\pi) = w(T) + w(M) \leq \frac{3}{2} w(\text{OPT}) \]

Step 5: Use the same trick to convert \(T + M \) into a legit ham-cycle \(\pi_0 \).

Via DFS + Short cutting:

\[\pi_0 = \text{ACD} \text{FEC} \text{BA} \]

\[\pi = \text{ACD} \text{F} \text{E} \text{C} \text{BA} \]

Return \(\pi_0 \) as answer.

Then \(w(\pi_0) \leq w(\pi) \leq \frac{3}{2} w(\text{OPT}) \).
Finally, we need to show $w(M) \leq \frac{1}{2} w(COPT)$.

Suppose we restrict our graph G to O, call this restricted graph G^o, and find the optimal TSP solution on G^o. Let this restricted solution be R, then:

$$w(R) \leq w(COPT)$$

Why? Since OPT is a ham cycle going through all nodes, it also visits all nodes in O. If we visit nodes in G^o in the same order as they appear in OPT (call this "OPT restrict to G^o"), the weight would only decrease, due to short cutting, so:

$$w(R) \leq w(OPT \text{ restricted to } G^o) \leq w(COPT)$$

Since R is optimal in G^o

due to short cutting.

Now we show $w(M) \leq \frac{1}{2} w(R)$.

Again, there must be an even # of nodes in O, and since G is complete, a perfect matching exists.
In particular, if we list the edges in R in order: e_1, e_2, \ldots, e_{2k} we can see that:
both $\{ e_1, e_3, e_5, \ldots \}$ and $\{ e_2, e_4, e_6, \ldots \}$ are perfect matchings.

One of the 2 perfect matchings will have weight at most $\frac{w(R)}{2}$ but that in turn is at least as big as $w(M)$, which is the min weight perfect matching.

$w(M) \leq \frac{w(R)}{2} \leq \frac{w(\text{OPT})}{2}$