In this lecture we begin our study of one of the main themes of the course, namely the relationships between polynomials that are sums of squares and semidefinite programming.

1 Nonegativity and sums of squares

Recall from a previous lecture the definition of a polynomial being a sum of squares.

Definition 1. A univariate polynomial \(p(x) \) is a sum of squares (SOS) if there exist \(q_1, \ldots, q_m \in \mathbb{R}[x] \) such that

\[
p(x) = \sum_{k=1}^m q_k^2(x). \tag{1}
\]

If a polynomial \(p(x) \) is a sum of squares, then it obviously satisfies \(p(x) \geq 0 \) for all \(x \in \mathbb{R} \). Thus, a SOS condition is a sufficient condition for global nonnegativity.

As we have seen, in the univariate case, the converse is also true:

Theorem 2. A univariate polynomial is nonnegative if and only if it is a sum of squares.

As we will see, there is a very direct link between sum of squares conditions on polynomials and semidefinite programming. We study first the univariate case.

2 Sums of squares and semidefinite programming

Consider a polynomial \(p(x) \) of degree \(2d \) that is a sum of squares, i.e., it can be written as in (1). Notice that the degree of the polynomials \(q_k \) is at most equal to \(d \), since the highest term of each \(q_k^2 \) is positive, and thus there cannot be any cancellation in the highest power of \(x \). Then, we can write

\[
\begin{bmatrix}
q_1(x) \\
q_2(x) \\
\vdots \\
q_m(x)
\end{bmatrix} = V
\begin{bmatrix}
1 \\
x \\
\vdots \\
x^d
\end{bmatrix},
\]

where \(V \in \mathbb{R}^{m \times (d+1)} \), and its \(k \)th row contains the coefficients of the polynomial \(q_k \). For future reference, let \([x]_d \) be the vector in the right-hand side of (2). Consider now the matrix \(Q = V^T V \). We then have

\[
p(x) = \sum_{k=1}^m q_k^2(x) = (V[x]_d)^T (V[x]_d) = [x]_d^T V^T V [x]_d = [x]_d^T Q [x]_d.
\]

Conversely, assume there exists a symmetric positive definite \(Q \), for which \(p(x) = [x]_d^T Q [x]_d \). Then, by factorizing \(Q = V^T V \) (e.g., via Choleski, or square root factorization), we arrive at a SOS decomposition of \(p \).

We formally express this in the following lemma, that gives a direct relation between positive semidefinite matrices and a sum of squares condition.

Lemma 3. Let \(p(x) \) be a univariate polynomial of degree \(2d \). Then, \(p(x) \) is nonnegative (or SOS) if and only if there exists \(Q \in \mathcal{S}_+^{d+1} \) that satisfies

\[
p(x) = [x]_d^T Q [x]_d.
\]
Indexing the rows and columns of Q by $\{0, \ldots, d\}$, we have:

$$[x]^T_d Q[x]_d = \sum_{j=0}^d \sum_{k=0}^d Q_{jk} x^j x^k = \sum_{i=0}^{2d} \left(\sum_{j+k=i} Q_{jk} \right) x^i$$

Thus, for this expression to be equal to $p(x)$, it should be the case that

$$p_i = \sum_{j+k=i} Q_{jk}, \quad i = 0, \ldots, 2d. \quad (3)$$

This is a system of $2d + 1$ linear equations between the entries of Q and the coefficients of $p(x)$. Thus, since Q is simultaneously constrained to be positive semidefinite, and to belong to a particular affine subspace, a SOS condition is exactly equivalent to a semidefinite programming problem.

Lemma 4. A polynomial $p(x) = \sum_{i=0}^{2d} p_i x^i$ is a sum of squares if and only if there exists $Q \in S^{d+1}_+$ satisfying (3). This is a semidefinite programming problem.

3 Applications and extensions

We discuss first a few applications of the SDP characterization of nonnegative polynomials, followed by several extensions.

3.1 Optimization

Our first application concerns the global optimization of a univariate polynomial $p(x)$. Rather than focusing on computing an x_* for which $p(x_*)$ is as small as possible, we attempt first to obtain a good (or the best) lower bound on its optimal value. It is easy to see that a number γ is a global lower bound of a polynomial $p(x)$, if and only if the polynomial $p(x) - \gamma$ is nonnegative, i.e.,

$$p(x) \geq \gamma \quad \forall x \in \mathbb{R} \iff p(x) - \gamma \geq 0 \quad \forall x \in \mathbb{R}.$$

Notice that the polynomial $p(x) - \gamma$ has coefficients that depend affinely on γ. Consider now the optimization problem defined by

$$\max \gamma \quad \text{s.t.} \quad p(x) - \gamma \text{ is SOS.}$$

It should be clear that this is a convex problem, since the feasible set is defined by an infinite number of linear inequalities. Its optimal solution γ_* is equal to the global minimum of the polynomial, $p(x_*)$. Furthermore, using Lemma 4 we can easily write this as a semidefinite programming problem. We can thus obtain the global minimum of a univariate polynomial, by solving an SDP problem. Notice also that at optimality, we have $0 = p(x_*) - \gamma_* = \sum_{k=1}^m q_k^2(x_*)$, and thus all the q_k simultaneously vanish at x_*, which gives a way of computing the optimal solution x_*. As we shall see later, we can also obtain this solution directly from the dual problem, by using complementary slackness.

Notice that even though $p(x)$ may be highly nonconvex, we are nevertheless effectively computing its global minimum.

3.2 Nonnegativity on intervals

We have seen how to characterize a univariate polynomial that is nonnegative on $(-\infty, \infty)$ in terms of SDP conditions. But what if we are interested in polynomials that are nonnegative only in an interval (either finite, or semi-infinite)? As explained below, we can use very similar ideas, and two classical characterizations, usually associated to the names Pólya-Szego, Fekete, or Markov-Lukacs. The basic results are the following:
Theorem 5. The polynomial $p(x)$ is nonnegative on $[0, \infty)$, if and only if it can be written as

$$p(x) = s(x) + x \cdot t(x),$$

where $s(x), t(x)$ are SOS. If $\deg(p) = 2d$, then we have $\deg(s) \leq 2d$, $\deg(t) \leq 2d - 2$, while if $\deg(p) = 2d + 1$, then $\deg(s) \leq 2d$, $\deg(t) \leq 2d$.

Theorem 6. Let $a < b$. Then, $p(x)$ is nonnegative on $[a, b]$, if and only if it can be written as

$$\begin{cases}
 p(x) = s(x) + (x - a) \cdot (b - x) \cdot t(x), & \text{if } \deg(p) \text{ is even} \\
 p(x) = (x - a) \cdot s(x) + (b - x) \cdot t(x), & \text{if } \deg(p) \text{ is odd}
\end{cases}$$

where $s(x), t(x)$ are SOS. In the first case, we have $\deg(p) = 2d$, and $\deg(s) \leq 2d$, $\deg(t) \leq 2d - 2$. In the second, $\deg(p) = 2d + 1$, and $\deg(s) \leq 2d$, $\deg(t) \leq 2d$.

Notice that in both of these results, one direction of the implication is evident.

3.3 Rational functions

What happens if we want to minimize a univariate rational function, rather than a polynomial? Consider a rational function given as a quotient of polynomials $p(x)/q(x)$, where $q(x)$ is strictly positive (why?). Then, we have

$$\frac{p(x)}{q(x)} \geq \gamma \iff p(x) - \gamma q(x) \geq 0,$$

and therefore we can find the global minimum of the rational function by solving

$$\max \gamma \quad \text{s.t.} \quad p(x) - \gamma q(x) \text{ is SOS}.$$

The constrained case (i.e., over finite or semi-infinite intervals) are very similar, and can be formulated using the results in the Section 3.2. The details are left for the exercises.

4 Multivariate polynomials

If a polynomial $p(x)$ is a sum of squares, it is always true that $p(x) \geq 0$. However, for polynomials in more than one variable, it is no longer true that nonnegativity is equivalent to a sum of squares condition. In fact, for polynomials of degree greater than or equal to four, deciding polynomial nonnegativity is an NP-hard problem (as a function of the number of variables).

More than a century ago, David Hilbert showed that equality between the set of nonnegative and SOS polynomials holds only in the following three cases:

- Univariate polynomials ($i.e., n = 1$)
- Quadratic polynomials ($2d = 2$)
- Bivariate quartics ($n = 2, 2d = 4$)

For all other cases, there always exist nonnegative polynomials that are not sums of squares. A classical counterexample is the bivariate sextic ($n = 2, 2d = 6$) due to Motzkin, given by (in dehomogenized form)

$$M(x, y) = x^4 y^2 + x^2 y^4 + 1 - 3x^2 y^2.$$

This polynomial is nonnegative, but is not a sum of squares. We will prove both facts later. An excellent account of much of the classical work in this area has been provided by Bruce Reznick in [Rez00].
4.1 SDP formulation

Essentially the same construction we have seen in Lemma 4 applies to the multivariate case. In this case, we consider polynomials of degree $2d$ in n variables. In the dense case, i.e., when the polynomial is not sparse, the number of coefficients is equal to $\binom{n+2d}{2d}$. If we let $p(x) = \sum_{\alpha} p_{\alpha} x^\alpha$, and indexing the matrix Q by the $\binom{n+d}{d}$ monomials in n variables of degree d, we have the SDP conditions on $Q \in S_+^{\binom{n+d}{d}}$:

$$p_{\alpha} = \sum_{\beta+\gamma=\alpha} Q_{\beta\gamma}, \quad Q \succeq 0. \quad (4)$$

We have exactly $\binom{n+2d}{2d}$ linear equations, one per each coefficient of $p(x)$. As before, these conditions are affine conditions relating the entries of Q and the coefficients of $p(x)$. Thus, we can decide membership to, or optimize over, the set of SOS polynomials by solving a semidefinite programming problem.

4.2 Using the Newton polytope

Recall that we have defined in a previous lecture the Newton polytope of a polynomial $p(x) \in \mathbb{R}[x_1, \ldots, x_n]$ as the convex hull of the set of exponents appearing in p. This allowed us to introduce a notion of sparseness for a polynomial, related to the size of its Newton polytope. Sparsity (in this algebraic sense) allows a notable reduction in the computational cost of checking sum of squares conditions of multivariate polynomials. The reason is the following theorem due to Reznick:

Theorem 7 ([Rez78], Theorem 1). If $p(x) = \sum q_i(x)^2$, then $\text{New}(q_i) \subseteq \frac{1}{2} \text{New}(p)$.

In other words, this theorem allows us, without loss of generality, to restrict the set of monomials appearing in the representation $[4]$ to those in the Newton polytope of p, scaled by a factor of $\frac{1}{2}$. This reduces the size of the corresponding matrix Q, thus simplifying the SDP problem.

Example 8. Consider the following polynomial:

$$p = (w^4 + 1)(x^4 + 1)(y^4 + 1)(z^4 + 1) + 2w + 3x + 4y + 5z.$$

The polynomial p has degree $2d = 16$, and four independent variables ($n = 4$). A naive approach, along the lines described earlier, would require a matrix Q of size $\binom{n+d}{d} = 495$. However, the Newton polytope of p is easily seen to be the four dimensional hypercube with vertices in $(0,0,0,0)$ and $(4,4,4,4)$. Therefore, the polynomials q_i in the SOS decomposition of p will have at most $3^4 = 81$ distinct monomials, and as a consequence the full decomposition can be computed by solving a much smaller SDP.

5 Duality and density

In the next lecture, we will revisit the sum of squares construction, but emphasizing this time the dual side, and its appealing measure-theoretic interpretation. We will also review some recent results on the relative density of the cones of nonnegative polynomials and SOS.

References
