External Memory Algorithms for Geometric Problems

Piotr Indyk

Slides partially by Lars Arge and Jeff Vitter
Compared to Previous Lectures

- Another way to tackle large data sets
- Exact solutions (no more embeddings)
External Memory Model

• Parameters:
 - N: Elements in structure
 - B: Elements per block
 - M: Elements in main memory
Today

- Sorting: $O(\frac{N}{B} \log_{M} N)$ time
- 1D data structure for searching in external memory (B-tree): $O(\log_{B} N)$ time
- 2D problem: finding all intersections among a set of horizontal and vertical segments: $O(\frac{N}{B} \log_{\frac{M}{B}} N)$ time
Sorting

• M/B-way merge sort:
 – Split N elements into $K=M/B$ sequences
 – Sort recursively
 – Merge in $O(N/B)$ time:

• Recurrence: $T(N) = K \cdot T(N/K) + O(N/B)$
• $T(N) = O(N/B \log_K N)$
Horizontal/Vertical Line Intersection

- Given: a set of N horizontal and vertical line segments
- Goal: find all H/V intersections
- Assumption: all x and y coordinates of endpoints different
Main Memory Algorithm

- Presort the points in y-order
- Sweep the plane top down with a horizontal line
- When reaching a V-segment, store its x value in a tree. When leaving it, delete the x value from the tree
- Invariant: the balanced tree stores the V-segments hit by the sweep line
- When reaching an H-segment, search (in the tree) for its endpoints, and report all values/segments in between
- Total time is $O(N \log N + P)$
External Memory Issues

• Can use B-tree as a search tree:
 \(\mathcal{O}(N \log_B N) \) operations
• Still much worse than the
 \(\mathcal{O}(N/B \times \log_{M/B} N) \) sorting bound
1D Version of the Intersection Problem

• Given: a set of \(N \) 1D horizontal and vertical line segments (i.e., intervals and points on a line)

• Goal: find all point/segment intersections

• Assumption: all \(x \) coordinates of endpoints different
Interlude: External Stack

• Stack:
 – Push
 – Pop

• Can implement a stack in external memory using $O(P/B)$ I/O’s per P operations
 – Always keep $\leq 2B$ top elements in main memory
 – Perform disk access only when it is “earned”:
 • Read when necessary
 • Write when starting a new block

...
Back to 1D Intersection Problem

• Will use fast stack and sorting implementations

• Sort all points and intervals in x-order (of the left endpoint)

• Iterate over consecutive (end)points p
 – If p is a left endpoint of I, add I to the stack S
 – If p is a point, pop all intervals I from stack S and push them on stack S', while:
 • Eliminating all “dead” intervals
 • Reporting all “alive” intervals
 – Push the intervals back from S' to S
Analysis

• Sorting: $O(N/B \times \log_{M/B} N)$ I/O’s
• Each interval is pushed/popped when:
 – An intersection is reported, or
 – Is eliminated as “dead”
• Total stack operations: $O(N+P)$
• Total stack I/O’s: $O((N+P)/B)$
Back to the 2D Case
Algorithm

- Divide the x-range into M/B slabs, so that each slab contains the same number of V-segments
- Each slab has a stack storing V-segments
- Sort all segments in the y-order
- For each segment I:
 - If I is a V-segment, add I to the stack in the proper slab
 - If I is an H-segment, then for all slabs S which intersect I:
 - If I spans S, proceed as in the 1D case
 - Otherwise, store the intersection of S and I for later
- For each slab, recurse on the segments stored in that slab
The recursion

- For each slab *separately* we apply the same algorithm
- On the bottom level we have only one V-segment, which is easy to handle
- Recursion depth: $\log_{M/B} N$
Analysis

• Initial presorting: $O(N/B \times \log_{M/B} N)$ I/O’s
• First level of recursion:
 – At most $O(N+P)$ pop/push operations
 – At most $2N$ of H-segments stored
 – Total: $O((N+P)/B)$ I/O’s
• Further recursion levels:
 – The total number of H-segment pieces (over all slabs) is at most twice the number of the input H-segments; it does not double at each level
 – By the above argument we pay $O(N/B)$ I/O’s per level
• Total: $O(P/B+N/B \times \log_{M/B} N)$ I/O’s
References

• See http://www.brics.dk/MassiveData02, especially:
 – First lecture by Lars Arge (for B-trees etc)
 – Second lecture by Jeff Vitter (for distribution sweep)