Similarity Search in High Dimensions II

Piotr Indyk
MIT
Approximate Nearest Neighbor

- c-Approximate Nearest Neighbor: build data structure which, for any query q
 - returns $p' \in P$, $||p-q|| \leq cr$,
 - where r is the distance to the nearest neighbor of q
Approximate Near Neighbor

- **c-Approximate r-Near Neighbor**: build data structure which, for any query q:
 - If there is a point $p \in P$, $\|p-q\| \leq r$
 - It returns $p' \in P$, $\|p-q\| \leq cr$

- Most algorithms randomized:
 - For each query q, the probability (over the randomness used to construct the data structure) is at least 90%

- Reductions and variants:
 - c-Approx Nearest Neighbor reduces to c-Approx Near Neighbor
Algorithms for c-Approximate Near Neighbor

<table>
<thead>
<tr>
<th>Space</th>
<th>Time</th>
<th>Comment</th>
<th>Norm</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>$dn+n^{O(1/\varepsilon^2)}$</td>
<td>$d \times \log n / \varepsilon^2$ (or 1)</td>
<td>$c=1+\varepsilon$</td>
<td>Hamm, l_2</td>
<td>[KOR’98, IM’98]</td>
</tr>
<tr>
<td>$n^{\Omega(1/\varepsilon^2)}$</td>
<td>$O(1)$</td>
<td></td>
<td></td>
<td>[AIP’06]</td>
</tr>
<tr>
<td>$dn+n^{1+\rho(c)}$</td>
<td>$dn^{\rho(c)}$</td>
<td>$\rho(c)=1/c$</td>
<td>Hamm, l_2</td>
<td>[IM’98], [GIM’98],[Cha’02]</td>
</tr>
<tr>
<td>$dn \times \log s$</td>
<td>$dn^{\alpha(c)}$</td>
<td>$\sigma(c)=\Omega(\log c/c)$</td>
<td>Hamm, l_2</td>
<td>[Ind’01]</td>
</tr>
<tr>
<td>$dn+n^{1+\rho(c)}$</td>
<td>$dn^{\rho(c)}$</td>
<td>$\rho(c)=1/c^2 + o(1)$</td>
<td>l_2</td>
<td>[Al’06]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\sigma(c)=\Omega(1/c)$</td>
<td>l_2</td>
<td>[Pan’06]</td>
</tr>
</tbody>
</table>
Locality-Sensitive Hashing

[Indyk-Motwani’98]

• Idea: construct hash functions \(g: \mathbb{R}^d \rightarrow U \) such that for any points \(p,q \):

 – If \(\|p-q\| \leq r \), then \(\Pr[g(p)=g(q)] \) is “high” “not-so-small”

 – If \(\|p-q\| > cr \), then \(\Pr[g(p)=g(q)] \) is “small”

• Then we can solve the problem by hashing
A family H of functions $h: \mathbb{R}^d \rightarrow U$ is called (P_1, P_2, r, cr)-sensitive, if for any p, q:
- if $||p-q|| < r$ then $\Pr[h(p)=h(q)] > P_1$
- if $||p-q|| > cr$ then $\Pr[h(p)=h(q)] < P_2$

Example: Hamming distance
- $h(p)=p_i$, i.e., the i-th bit of p
 - Probabilities: $\Pr[h(p)=h(q)] = 1 - H(p,q)/d$

$p=10010010$
$q=11010110$
Algorithm

• We use functions of the form
 \[g(p) = <h_1(p), h_2(p), \ldots, h_k(p)> \]

• Preprocessing:
 – Select \(g_1 \ldots g_L \)
 – For all \(p \in P \), hash \(p \) to buckets \(g_1(p) \ldots g_L(p) \)

• Query:
 – Retrieve the points from buckets \(g_1(q), g_2(q), \ldots \), until
 • Either the points from all \(L \) buckets have been retrieved, or
 • Total number of points retrieved exceeds \(3L \)
 – Answer the query based on the retrieved points
 – Total time: \(O(dL) \)
Analysis [IM’98, Gionis-Indyk-Motwani’99]

• **Lemma 1**: the algorithm solves c-approximate NN with:
 – Number of hash functions:
 \[L = C n^\rho, \quad \rho = \frac{\log(1/P_1)}{\log(1/P_2)} \]
 \((C=C(P_1,P_2)\) is a constant for \(P_1\) bounded away from 0) \([O’Donnell-Wu-Zhou’09]\)
 – Constant success probability per query \(q\)

• **Lemma 2**: for Hamming LSH functions, we have \(\rho = 1/c\)
Proof of Lemma 1 by picture

- Points in \(\{0,1\}^d \)
- Collision prob. for \(k=1..3, \ L=1..3 \) (recall: \(L=\#\text{indices}, \ k=\#\text{h's} \))
- Distance ranges from 0 to \(d=10 \)
Proof

• Define:
 – p: a point such that $\|p-q\| \leq r$
 – $\text{FAR}(q) = \{ p' \in P: \|p' - q\| > c \cdot r \}$
 – $B_i(q) = \{ p' \in P: g_i(p') = g_i(q) \}$

• Will show that both events occur with > 0 probability:
 – E_1: $g_i(p) = g_i(q)$ for some $i = 1 \ldots L$
 – E_2: $\Sigma_i |B_i(q) \cap \text{FAR}(q)| < 3L$
Proof ctd.

• Set $k = \text{ceil}(\log_{1/P^2} n)$
• For $p' \in \text{FAR}(q)$,
 $$\Pr[g_i(p') = g_i(q)] \leq P_2^k \leq 1/n$$
• $E[|B_i(q) \cap \text{FAR}(q)|] \leq 1$
• $E[\sum_i |B_i(q) \cap \text{FAR}(q)|] \leq L$
• $\Pr[\sum_i |B_i(q) \cap \text{FAR}(q)| \geq 3L] \leq 1/3$
Proof, ctd.

- \(\Pr[g_i(p) = g_i(q)] \geq 1/P_1^k \geq P_1 \log_{1/P_2} (n) + 1 \geq 1/(P_1 n^\rho) = 1/L \)
- \(\Pr[g_i(p) \neq g_i(q), i=1..L] \leq (1-1/L)^L \leq 1/e \)
Proof, end

- \(\Pr[E_1 \text{ not true}] + \Pr[E_2 \text{ not true}] \leq \frac{1}{3} + \frac{1}{e} = 0.7012. \)
- \(\Pr[E_1 \cap E_2] \geq 1 - (\frac{1}{3} + \frac{1}{e}) \approx 0.3 \)
Proof of Lemma 2

• Statement: for
 – \(P_1 = 1 - r/d \)
 – \(P_2 = 1 - cr/d \)
we have \(\rho = \log(P_1)/\log(P_2) \leq 1/c \)

• Proof:
 – Need \(P_1^c \geq P_2 \)
 – But \((1-x)^c \geq (1-cx) \) for any \(1>x>0, \ c>1 \)
Beyond \(\{0, 1\}^d \): \(l_1 \) norm

- \(l_1 \) norm over \(\{0\ldots M\}^d \)
 - Embed into Hamming space with dimension \(dM \) [Linial-London-Rabinovich’94]
 - Compute
 \[
 \text{Unary}((x_1, \ldots, x_d)) = \text{Unary}(x_1) \ldots \text{Unary}(x_d)
 \]
 - We have
 \[
 \|p-q\|_1 = H(\text{Unary}(p), \text{Unary}(q))
 \]
 - Need to deal with large values of \(M \)

- \(l_1 \) norm over \([0\ldots s]^d \)
 - Round each coordinate to the nearest multiple of \(r \varepsilon/d \)
 - Introduces additive error of \(r \varepsilon \), or multiplicative \((1+\varepsilon)\) factor
 - Now we have \(M = s^* \frac{d}{r \varepsilon} \)
Beyond \(\{0,1\}^d\) : \(l_1\) norm ctd

- \(l_1\) norm over \(\mathbb{R}^d\)
 - Partition \(\mathbb{R}^d\) using a randomly shifted grid of side length \(s=10r\) [Bern’93]
 - For any two points \(p\) and \(q\), the probability that \(p\) and \(q\) fall into different grid cells is at most
 \[
 \frac{|p_1-q_1|}{s} + \frac{|p_2-q_2|}{s} + \ldots + \frac{|p_d-q_d|}{s} = \frac{||p-q||_1}{s}
 \]
 - If \(||p-q||_1 \leq r\), then probability is at most 10%
 - Build a separate data structure for each grid cell
 - To answer a query \(q\), use the data structure for the cell containing \(q\)
Beyond $\{0,1\}^d$: l_2 norm

- Embed l_2^d into l_1^t with $t=O(d/\varepsilon^2)$ with distortion $1+\varepsilon$ [Figiel-Lindenstrauss-Milman’76]
 - Use random projections
- Or, use Johnson-Lindenstrauss lemma to reduce the dimension to $t=O(\log n/\varepsilon^2)$ and apply exhaustive storage trick directly in l_2^t [Indyk-Motwani’98]
Recap

- LSH solves \(c \)-approximate NN with:
 - Number of hash fun: \(L = O(n^\rho) \), \(\rho = \log(1/P1)/\log(1/P2) \)
 - For Hamming distance we have \(\rho = 1/c \)

- Questions:
 - Beyond Hamming distance?
 - Embed \(l_2 \) into \(l_1 \) (random projections)
 - \(l_1 \) into Hamming (discretization)
 - Reduce the exponent \(\rho \)?
Projection-based LSH for L2

[Datar-Immorlica-Indyk-Mirrokni’04]

- Define \(h_{X,b}(p) = \lfloor (p^T X + b)/w \rfloor \):
 - \(w \approx r \)
 - \(X = (X_1 \ldots X_d) \), where \(X_i \) is chosen from:
 - Gaussian distribution (for L_2 norm)*
 - \(b \) is a scalar
Analysis

• Need to:
 – Compute $\Pr[h(p)=h(q)]$ as a function of $||p-q||$ and w; this defines P_1 and P_2
 – For each c choose w that minimizes
 \[\rho = \log_{1/P_2}(1/P_1) \]

• Method:
 – For l_2: computational
 – For general l_s: analytic
\(\rho(c) \) for \(l_2 \)

- Improvement not dramatic
- But the hash function very simple and works directly in \(l_2 \)
 - Basis for the Exact Euclidean LSH package (E2LSH)
New LSH scheme
[Andoni-Indyk’06]

• Instead of projecting onto \mathbb{R}^1, project onto \mathbb{R}^t, for constant t
• Intervals \rightarrow lattice of balls
 – Can hit empty space, so hash until a ball is hit
• Analysis:
 – $\rho = 1/c^2 + O(\log t / t^{1/2})$
 – Time to hash is $t^{O(t)}$
 – Total query time: $dn^{1/c^2+o(1)}$
• [Motwani-Naor-Panigrahy’06]: LSH in l_2 must have $\rho \geq 0.45/c^2$
• [O’Donnell-Wu-Zhou’09]: $\rho \geq 1/c^2 - o(1)$
New LSH scheme, ctd.

- How does it work in practice?
- The time $t^{O(t)}dn^{1/c^2+f(t)}$ is not very practical
 - Need $t \approx 30$ to see some improvement
- Idea: a different decomposition of \mathbb{R}^t
 - Replace random balls by Voronoi diagram of a lattice
 - For specific lattices, finding a cell containing a point can be very fast → fast hashing
Leech Lattice LSH

• Use Leech lattice in \mathbb{R}^{24}, $t=24$
 – Largest kissing number in 24D: 196560
 – Conjectured largest packing density in 24D
 – 24 is 42 in reverse…
• Very fast (bounded) decoder: about 519 operations [Amrani-Beery’94]
• Performance of that decoder for $c=2$:
 – $1/c^2$ 0.25
 – $1/c$ 0.50
 – Leech LSH, any dimension: $\rho \approx 0.36$
 – Leech LSH, 24D (no projection): $\rho \approx 0.26$
LSH Zoo

• Have seen:
 – Hamming metric: projecting on coordinates
 – L_2: random projection+quantization
• Other (provable):
 – L_1 norm: random shifted grid [Andoni-Indyk’05] (cf. [Bern’93])
 – Vector angle [Charikar’02] based on [Goemans-Williamson’94]
 – Jaccard coefficient [Broder’97]

 $J(A,B) = |A \cap B| / |A \cup B|$

• Other (empirical): inscribed polytopes [Terasawa-Tanaka’07], orthogonal partition [Neylon’10]
• Other (applied): semantic hashing, spectral hashing, kernelized LSH, Laplacian co-hashing, , BoostSSC, WTA hashing,...
Open questions

• Practically efficient LSH scheme for L_2 with $\rho = 1/c^2$
• Theoretically more efficient, e.g., decoder with $t^{O(1)}$ time
• Understand data adaptation (a.k.a. semantic hashing, spectral hashing, kernelized LSH, Laplacian co-hashing, BoostSSC, WTA hashing,...)
 – Would like an algorithm that is
 • correct (with desired probability) for any query
 • “efficient” on “good” data
Min-wise hashing

• In many applications, the vectors tend to be quite sparse (high dimension, very few 1’s)
• Easier to think about them as sets
• For two sets A, B, define the Jaccard coefficient:
 \[J(A, B) = \frac{|A \cap B|}{|A \cup B|} \]

 – If $A = B$ then $J(A, B) = 1$
 – If A, B disjoint then $J(A, B) = 0$

• How to compute short sketches of sets that preserve $J(.)$?
Hashing

• Mapping:
 \[g(A) = \min_{a \in A} h(a) \]
 where \(h \) is a random permutation of the elements in the universe

• Fact: \(\Pr[g(A) = g(B)] = J(A, B) \)

• Proof: Where is \(\min(h(A) \cup h(B)) \)?
Random hyperplane

• Let u, v be unit vectors in \mathbb{R}^m

• Angular distance:

 $$A(u,v) = \text{angle between } u \text{ and } v$$

• Sketching:
 – Choose a random unit vector r
 – Define $s(u) = \text{sign}(u^r)$
Probabilities

• What is the probability of $\text{sign}(u*\mathbf{r}) \neq \text{sign}(v*\mathbf{r})$?

• It is $A(u,v)/\pi$
Approximate Near Neighbor

- c-Approximate r-Near Neighbor: build data structure which, for any query q:
 - If there is a point $p \in P$, $||p-q|| \leq r$
 - It returns $p' \in P$, $||p-q|| \leq cr$