Segment Intersection

Piotr Indyk
Segment intersection

- Segment intersection problem:
 - Given: a set of n distinct segments $s_1 \ldots s_n$, represented by coordinates of endpoints
 - Detection: detect if there is any pair $s_i \neq s_j$ that intersects
 - Reporting: report all pairs of intersecting segments
Segment intersection

• Easy to solve in $O(n^2)$ time
• Is it possible to get a better algorithm for the reporting problem?
• NO (in the worst-case)
• However:
 – We will see we can do better for the detection problem
 – Moreover, the number of intersections P is usually small.

Then, we would like an output sensitive algorithm, whose running time is low if P is small.
Result

- We will show:
 - \(O(n \log n) \) time for detection
 - \(O((n +P) \log n) \) time for reporting
- We will use \textit{line sweep approach}
 - Many other applications, e.g., Voronoi diagrams, motion planning
Orthogonal segments

• All segments are either horizontal or vertical
• Assumption: all coordinates are distinct
• Therefore, only vertical-horizontal intersections exist
Orthogonal segments

• Sweep line:
 – A *vertical line* sweeps the plane from left to right
 – It “stops” at all “important” x-coordinates, i.e., when it hits a V-segment or endpoints of an H-segment
 – Invariant: all intersections on the left side of the sweep line have been already reported
Orthogonal segments ctd.

- We maintain sorted y-coordinates of H-segments currently intersected by the sweep line (using a balanced BST V).
- When we hit the left point of an H-segment, we add its y-coordinate to V.
- When we hit the right point of an H-segment, we delete its y-coordinate from V.
Orthogonal segments ctd.

- Whenever we hit a V-segment having coord. \((y_{\text{top}}, y_{\text{bot}})\), we report all H-segments in \(V\) with y-coordinates in \([y_{\text{top}}, y_{\text{bot}}]\).
Algorithm

- Sort all V-segments and endpoints of H-segments by their x-coordinates – this gives the “trajectory” of the sweep line
- Scan the elements in the sorted list:
 - Left endpoint: add segment to tree \(V \)
 - Right endpoint: remove segment from \(V \)
 - V-segment: report intersections with the H-segments stored in \(V \)
Analysis

- Sorting: $O(n \log n)$
- Add/delete H-segments to/from vertical data structure V:
 - $O(\log n)$ per operation
 - $O(n \log n)$ total
- Processing V-segments:
 - $O(\log n)$ per intersection - SEE NEXT SLIDE
 - $O(P \log n)$ total
- Overall: $O((P+ n) \log n)$ time
- Can be improved to $O(P +n \log n)$
Analyzing intersections

• Given:
 – A BST \(V \) containing \(y \)-coordinates
 – An interval \(I=[y_{\text{bot}},y_{\text{top}}] \)
• Goal: report all \(y \)'s in \(V \) that belong to \(I \)
• Algorithm:
 – \(y=\text{Successor}(y_{\text{bot}}) \)
 – While \(y\leq y_{\text{top}} \)
 • Report \(y \)
 • \(y:=\text{Successor}(y) \)
 – End
• Time: (number of reported \(y \)'s)*\(O(\log n) \) + \(O(\log n) \)
The general case

- Assumption: all coordinates of endpoints and intersections distinct
- In particular:
 - No vertical segments
 - No three segments intersect at one point
Sweep line

- Invariant (as before): all intersections on the left of the sweep line have been already reported
- Stops at all “important” x-coordinates, i.e., when it hits endpoints or intersections
- Problem I: Do not know the x-coordinates of intersections in advance!
- The list of intersection coordinates is constructed and maintained dynamically
 (in a “horizontal” data structure H)
Sweep line

- Also need to maintain the information about the segments intersecting the sweep line
- **Problem II:** Cannot keep the values of y-coordinates of the segments!
- Instead, we will maintain their order. I.e., at any point, we maintain all segments intersecting the sweep line, sorted by the y-coordinates of the intersections (in a “vertical” data structure \(V \))

- Key idea: check only for the intersections of segments that are neighbors in \(V \)
Java applet

- Example used in the lecture:
Algorithm

- Initialize the “vertical” BST V (to “empty”)
- Initialize the “horizontal” priority queue H (to contain the segments’ endpoints sorted by x-coordinates)
- Repeat
 - Take the next “event” p from H:
 // Update V
 - If p is the left endpoint of a segment, add the segment to V
 - If p is the right endpoint of a segment, remove the segment from V
 - If p is the intersection point of s and s', swap the order of s and s' in V, report p

(continued on the next slide)
Algorithm ctd.

// Update H
- For each new pair of neighbors s and s' in V:
 - Check if s and s' intersect on the right side of the sweep line
 - If so, add their intersection point to H
 - Remove the possible duplicates in H
- Until H is empty
Analysis

• Initializing H: $O(n \log n)$
• Updating V:
 – $O(\log n)$ per operation
 – $O((P+n) \log n)$ total
• Updating H:
 – $O(\log n)$ per intersection
 – $O(P \log n)$ total
• Overall: $O((P+n) \log n)$ time
Correctness

• All reported intersections are correct
• Assume there is an intersection not reported. Let \(p=(x,y) \) be the first such unreported intersection (of \(s \) and \(s' \))
• Let \(x' \) be the last event before \(p \). Observe that:
 – At time \(x' \) segments \(s \) and \(s' \) are neighbors on the sweep line
 – Since no intersections were missed till then, \(V \) maintained the right order of intersecting segments
 – Thus, \(s \) and \(s' \) were neighbors in \(V \) at time \(x' \). Thus, their intersection should have been detected
Optimality

- Is $O((P+n)\log n)$ optimal?
- No, one can get $O(P + n\log n)$: