Orthogonal Range Queries

Piotr Indyk
Range Searching in 2D

- Given a set of n points, build a data structure that for any query rectangle R, reports all points in R.
Kd-trees [Bentley]

- Not the most efficient solution in theory
- Everyone uses it in practice
- Algorithm:
 - Choose x or y coordinate (alternate)
 - Choose the median of the coordinate; this defines a horizontal or vertical line
 - Recurse on both sides
- We get a binary tree:
 - Size: $O(N)$
 - Depth: $O(\log N)$
 - Construction time: $O(N \log N)$
Kd-tree: Example

Each tree node v corresponds to a region $\text{Reg}(v)$.
Kd-tree: Range Queries

1. Recursive procedure, starting from $v=\text{root}$
2. Search (v,R):
 a) If v is a leaf, then report the point stored in v if it lies in R
 b) Otherwise, if $\text{Reg}(v)$ is contained in R, report all points in the subtree of v
 c) Otherwise:
 • If $\text{Reg(left}(v))$ intersects R, then Search(left(v),R)
 • If $\text{Reg(right}(v))$ intersects R, then Search(right(v),R)
Query demo
Query Time Analysis

• We will show that Search takes at most $O(n^{1/2}+P)$ time, where P is the number of reported points
 – The total time needed to report all points in all sub-trees (i.e., taken by step b) is $O(P)$
 – We just need to bound the number of nodes v such that $\text{Reg}(v)$ intersects R but is not contained in R. In other words, the boundary of R intersects the boundary of $\text{Reg}(v)$
 – Will make a gross overestimation: will bound the number of $\text{Reg}(v)$ which are crossed by any of the 4 horizontal/vertical lines
Query Time Continued

• What is the max number $Q(n)$ of regions in an n-point kd-tree intersecting (say, vertical) line?
 – If we split on x, $Q(n)=1+Q(n/2)$
 – If we split on y, $Q(n)=1+2*Q(n/2)$
 – Since we alternate, we can write $Q(n)=2+2Q(n/4)$

• This solves to $O(n^{1/2})$
Analysis demo
A Faster Solution

- Query time: $O(\log^2 n + P)$
- Space: $O(n \log n)$
Idea I: Ranks

• Sort x and y coordinates of input points
• For a rectangle \(R = [x_1, x_2] \times [y_1, y_2] \), we have point \((u, v) \in R\) iff
 - \(\text{succ}_x(x_1) \leq \text{rank}_x(u) \leq \text{pred}_x(x_2) \)
 - \(\text{succ}_y(y_1) \leq \text{rank}_y(v) \leq \text{pred}_y(y_2) \)
• Thus we can replace
 - Point coordinates by their rank
 - Query boundaries by succ/pred; this adds \(O(\log n) \) to the query time
Dyadic intervals

• Assume \(n \) is a power of 2. Dyadic intervals are:
 – \([1,1] , [2,2] \ldots [n,n]\)
 – \([1,2] , [3,4] \ldots [n-1,n]\)
 – \([1,4] , [5,8] \ldots [n-3,n]\)
 – \ldots
 – \([1\ldots n]\)

• Any interval \{a\ldots b\} can be decomposed into \(O(\log n) \) dyadic intervals:
 – Imagine a full binary tree over \{1\ldots n\}
 – Each node corresponds to a dyadic interval
 – Any interval \{a\ldots b\} can be “covered” using \(O(\log n) \) sub-trees
Detailed recipe of the decomposition

• Let A be a path from a to the root and B be the path from b to the root
• Let v be the node where A and B diverge, i.e., the lowest node v that belongs to both A and B. Note that left(v) is in A, while right(v) is in B
 – Note that v could be the root
• Let A’ be the path v…a, and B’ be the path v…b
• Create the decomposition
 – Include a and b
 – For each node u in A’:
 • If u is a left child of its parent, include its sibling
 – For each node u in B’:
 • If u is a right child of its parent, include its sibling
• Note that the above decomposition might not have the minimum size, but it has size O(log n)

2/24/12
Range Trees

- For each level $l=1 \ldots \log n$, partition x-ranks using level-l dyadic intervals.
- This induces vertical strips.
- Within each strip, construct a balanced BST on y-coordinates.
Range Trees
Range Trees
Analysis

• Each point occurs in $\log n$ different levels
• Space: $O(n \log n)$
• How do we implement the query?
Query procedure

• Consider query \(R = X \times Y \)
• Partition \(X \) into dyadic intervals
• For each interval, query the corresponding strip BST using \(Y \)
Query procedure
Query procedure
Analysis ctd.

• Query time:
 – $O(\log n + \text{output})$ time per strip
 – $O(\log n)$ strips
 – Total: $O(\log^2 n + P)$

• Faster than kd-tree, but space $O(n \log n)$

• Recursive application of the idea gives
 – $O(\log^d n)$ query time
 – $O(n \log^{d-1} n)$ space

for the d-dimensional problem
Approximate Nearest Neighbor (ANN)

• Given: a set of points P in the plane
• Goal: given a query point q, and $\epsilon > 0$, find a point p' whose distance to q is at most $(1+\epsilon)$ times the distance from q to its nearest neighbor
Our “solution”

• We will “solve” the problem using kd-trees…
• …under the assumption that all leaf cells of the kd-tree for P have bounded aspect ratio
• Assumption somewhat strict, but satisfied in practice for most of the leaf cells
• We will show
 – $O(\log n/\varepsilon^2)$ query time
 – $O(n)$ space (inherited from kd-tree)
ANN Query Procedure

• Locate the leaf cell containing \(q \)

• Enumerate all leaf cells \(C \) in the increasing order of distance from \(q \) (denote it by \(r \))
 – Update \(p' \) so that it is the closest point seen so far
 – Note: \(r \) increases, \(\text{dist}(q,p') \) decreases

• Stop if \(\text{dist}(q,p') < (1+\varepsilon)r \)
Analysis

• Running time:
 – All cells C seen so far (except maybe for the last one) have diameter $> \varepsilon r$
 – …Because if not, then $p(C)$ would have been a $(1+\varepsilon)$-approximate nearest neighbor, and we would have stopped
 – The number of cells with diameter εr, bounded aspect ratio, and touching a ball of radius r is at most $O(1/\varepsilon^2)$