1. Assume that ZF set theory (the standard axiom system for mathematics) is sound. Let \(M \) be a Turing machine that, on input \(x \) in \(\{0,1\}^n \), first checks whether \(x \) (or any contiguous substring of \(x \)) encodes a ZF proof that ZF is inconsistent, and then runs for \(3^n \) steps if so, and for \(2^n \) steps otherwise.

(a) What is \(M \)'s asymptotic running time?

(b) Is \(M \)'s asymptotic running time provable in ZF? Why or why not?

2. Let \(L \) be a subset of \(0,1^n \). Since \(L \) is finite, it is clear that \(L \) is regular. Nevertheless, by using a variant of Shannon’s counting argument, show that it is possible to choose an \(L \) so that any DFA that recognizes \(L \) must have \(\Omega(2^n) \) states.

3. Give a context-free grammar that generates the complement of the language \(L = \{ a^m b^n \mid m, n > 0 \} \).
Solutions

1. Assume that ZF set theory (the standard axiom system for mathematics) is sound. Let M be a Turing machine that, on input x in $\{0, 1\}^n$, first checks whether x (or any contiguous substring of x) encodes a ZF proof that ZF is inconsistent, and then runs for 3^n steps if so, and for 2^n steps otherwise.

 (a) **What is M’s asymptotic running time?**
 Since we are assuming ZF set theory is sound, x will not encode a proof that ZF is inconsistent. Thus, M will run for $O(2^n)$ steps.

 (b) **Is M’s asymptotic running time provable in ZF? Why or why not?**
 If one could prove in ZF M’s asymptotic time, one prove ZF’s consistency in ZF. Since we assumed ZF is sound, by Gödel’s Theorem, we cannot prove its consistency.

2. Let L be a subset of $0, 1^n$. Since L is finite, it is clear that L is regular. Nevertheless, by using a variant of Shannon’s counting argument, show that it is possible to choose an L so that any DFA that recognizes L must have $Ω(\frac{2^n}{n})$ states.

 There are 2^n n-bit strings. For each of those strings, a given language will either include it or not include it — thus, there are 2^{2^n} total possibilities for L.

 Consider a DFA with T states. Each of these states can connect to any other state, which means that the total number of T-state DFA’s is approximately T^T. Since a DFA decides one particular language, by the pigeonhole principle, it must be the case that there are at least as many DFA’s as languages; in other words,

 $$2^{2^n} \leq T^T$$
 $$\log_2 2^{2^n} \leq \log_2 T^T$$
 $$2^n \leq T \log_2 T$$

 Plugging in $\frac{2^n}{n}$ for T and performing the same approximations as used in Shannon’s argument, one can see that T must indeed be $Ω(\frac{2^n}{n})$ for the inequality to hold.

3. **Give a context-free grammar that generates the complement of the language $L = \{a^m b^n \mid m, n > 0\}$**.

 Note that L is a regular language, meaning its complement is regular. too. It is not hard to come up with a DFA for L, after which we can simply switch all accepting and non-accepting states to come up with a DFA for \overline{L}. Then, we can make a regular expression for \overline{L} and from that come up with the following grammar:
\[S \rightarrow \varepsilon \mid A \mid bC \mid ABaC \]
\[A \rightarrow aA \mid \varepsilon \]
\[B \rightarrow bB \mid \varepsilon \]
\[C \rightarrow aC \mid bC \mid \varepsilon \]