6.045: Automata, Computability, and Complexity
Or, Great Ideas in Theoretical Computer Science
Spring, 2010

Class 10
Nancy Lynch
Today

• Final topic in computability theory: Self-Reference and the Recursion Theorem

• Consider adding to TMs (or programs) a new, powerful capability to “know” and use their own descriptions.

• The Recursion Theorem says that this apparent extra power does not add anything to the basic computability model: these self-referencing machines can be transformed into ordinary non-self-referencing TMs.
Today

• Self-Reference and the Recursion Theorem
• Topics:
 – Self-referencing machines and programs
 – Statement of the Recursion Theorem
 – Applications of the Recursion Theorem
 – Proof of the Recursion Theorem: Special case
 – Proof of the Recursion Theorem: General case

• Reading:
 – Sipser, Section 6.1
Self-referencing machines and programs
Self-referencing machines/programs

- Consider the following program P_1.
- P_1:
 - Obtain $< P_1 >$
 - Output $< P_1 >$
- P_1 simply outputs its own representation, as a string.
- Simplest example of a machine/program that uses its own description.
Self-referencing machines/programs

A more interesting example:

\(P_2 \): On input \(w \):
 - If \(w = \varepsilon \) then output 0
 - Else
 - Obtain \(< P_2 > \)
 - Run \(P_2 \) on tail\((w)\)
 - If \(P_2 \) on tail\((w)\) outputs a number \(n \) then output \(n+1 \).

What does \(P_2 \) compute?

It computes \(|w| \), the length of its input.

Uses the recursive style common in LISP, Scheme, other recursive programming languages.

We assume that, once we have the representation of a machine, we can simulate it on a given input.

E.g., if \(P_2 \) gets \(< P_2 > \), it can simulate \(P_2 \) on any input.
Self-referencing machines/programs

• One more example:
 • P_3: On input w:
 – Obtain $< P_3 >$
 – Run P_3 on w
 – If P_3 on w outputs a number n then output $n+1$.

• A valid self-referencing program.

• What does P_3 compute?

• Seems contradictory: if P_3 on w outputs n then P_3 on w outputs $n+1$.

• But according to the usual semantics of recursive calls, it never halts, so there’s no contradiction.

• P_3 computes a partial function that isn’t defined anywhere.
Statement of the Recursion Theorem
The Recursion Theorem

• Used to justify self-referential programs like P_1, P_2, P_3, by asserting that they have corresponding (equivalent) basic TMs.

• Recursion Theorem (Sipser Theorem 6.3):
Let T be a TM that computes a (possibly partial) 2-argument function $t: \Sigma^* \times \Sigma^* \rightarrow \Sigma^*$. Then there is another TM R that computes the function $r: \Sigma^* \rightarrow \Sigma^*$, where for any w, $r(w) = t(<R>, w)$.

The Recursion Theorem

- **Recursion Theorem:** Let T be a TM that computes a (possibly partial) 2-argument function \(t: \Sigma^* \times \Sigma^* \rightarrow \Sigma^* \). Then there is another TM R that computes the function \(r: \Sigma^* \rightarrow \Sigma^* \), where for any \(w \), \(r(w) = t(<R>, w) \).

- Thus, T is a TM that takes 2 inputs.
- Think of the first as the description of some arbitrary 1-input TM M.

- Then R behaves like T, but with the first input set to \(<R>\), the description of R itself.
- Thus, R uses its own representation.
The Recursion Theorem

• **Recursion Theorem:** Let T be a TM that computes a (possibly partial) 2-argument function \(t: \Sigma^* \times \Sigma^* \rightarrow \Sigma^* \). Then there is another TM R that computes the function \(r: \Sigma^* \rightarrow \Sigma^* \), where for any \(w \), \(r(w) = t(<R>, w) \).

• **Example:** \(P_2 \), revisited
 – Computes length of input.
 – What are T and R?
 – Here is a version of \(P_2 \) with an extra input \(<M>\):
 – \(T_2 \): On inputs \(<M>\) and \(w \):
 • If \(w = \varepsilon \) then output 0
 • Else run M on tail\((w)\); if it outputs n then output \(n+1 \).
The Recursion Theorem

- Example: \(P_2 \), revisited
 - \(T_2 \): On inputs \(<M>\) and w:
 - If \(w = \varepsilon \) then output 0
 - Else run \(M \) on \(\text{tail}(w) \); if it outputs \(n \) then output \(n+1 \).
 - \(T_2 \) produces different results, depending on what \(M \) does.
 - E.g., if \(M \) always loops:
 - \(T_2 \) outputs 0 on input \(w = \varepsilon \) and loops on every other input.
 - E.g., if \(M \) always halts and outputs 1:
 - \(T_2 \) outputs 0 on input \(w = \varepsilon \) and outputs 2 on every other input.
The Recursion Theorem

- **Example:** \(P_2 \), revisited
 - \(T_2 \): On inputs \(<M>\) and \(w \):
 - If \(w = \varepsilon \) then output 0
 - Else run \(M \) on \(\text{tail}(w) \); if it outputs \(n \) then output \(n+1 \).
 - Recursion Theorem says there is a TM \(R \) computing \(t(<R>, w) \)---just like \(T_2 \) but with input \(<M>\) set to \(<R>\) for the same \(R \).
 - This \(R \) is just \(P_2 \) as defined earlier.
The Recursion Theorem

• Recursion Theorem (Sipser Theorem 6.3):

Let \(T \) be a TM that computes a (possibly partial) 2-argument function \(t: \Sigma^* \times \Sigma^* \rightarrow \Sigma^* \).

Then there is another TM \(R \) that computes the function \(r: \Sigma^* \rightarrow \Sigma^* \), where for any \(w \), \(r(w) = t(<R>, w) \).
Applications of the Recursion Theorem
Applications of Recursion Theorem

- The Recursion Theorem can be used to show various negative results, e.g., undecidability results.
- **Application 1: \(\text{Acc}_{\text{TM}} \) is undecidable**
 - We already know this, but the Recursion Theorem provides a new proof.
 - Suppose for contradiction that \(D \) is a TM that decides \(\text{Acc}_{\text{TM}} \).
 - Construct another machine \(R \) using self-reference (justified by the Recursion Theorem):
 - \(R: \) On input \(w: \)
 - Obtain \(<R>\) (using Recursion Theorem)
 - Run \(D \) on input \(<R, w>\) (we can construct \(<R, w>\) from \(<R>\) and \(w\))
 - Do the opposite of what \(D \) does:
 - If \(D \) accepts \(<R, w>\) then reject.
 - If \(D \) rejects \(<R, w>\) then accept.
Application 1: Acc_{TM} is undecidable

- Suppose for contradiction that D decides Acc_{TM}.
- R: On input w:
 - Obtain $\langle R \rangle$
 - Run D on input $\langle R, w \rangle$
 - Do the opposite of what D does:
 - If D accepts $\langle R, w \rangle$ then reject.
 - If D rejects $\langle R, w \rangle$ then accept.

- RT says that TM R exists, assuming decider D exists.
- Formally, to apply RT, use the 2-input machine T:
- T: On inputs $\langle M \rangle$ and w:
 - Run D on input $\langle M, w \rangle$
 - Do the opposite of what D does:
 - If D accepts $\langle M, w \rangle$ then reject.
 - If D rejects $\langle M, w \rangle$ then accept.
Application 1: Acc_{TM} is undecidable

- Suppose for contradiction that D decides Acc_{TM}.
- R: On input w:
 - Obtain $<R>$
 - Run D on input $<R, w>$
 - Do the opposite of what D does:
 - If D accepts $<R, w>$ then reject.
 - If D rejects $<R, w>$ then accept.
- Now get a contradiction:
 - If R accepts w, then
 - D accepts $<R, w>$ since D is a decider for Acc_{TM}, so
 - R rejects w by definition of R.
 - If R does not accept w, then
 - D rejects $<R, w>$ since D is a decider for Acc_{TM}, so
 - R accepts w by definition of R.
- Contradiction. So D can’t exist, so Acc_{TM} is undecidable.
Applications of Recursion Theorem

• Application 2: Acc01_TM is undecidable
 – Similar to the previous example.
 – Suppose for contradiction that D is a TM that decides Acc01_TM.
 – Construct another machine R using the Recursion Theorem:

• R: On input w: (ignores its input)
 – Obtain $<R>$ (using RT)
 – Run D on input $<R>$
 – Do the opposite of what D does:
 • If D accepts $<R>$ then reject.
 • If D rejects $<R>$ then accept.

• RT says that R exists, assuming decider D exists.
Application 2: \text{Acc}01_{\text{TM}} \text{ is undecidable}

- Suppose for contradiction that \(D \) decides \text{Acc}01_{\text{TM}}.
- \(R \): On input \(w \):
 - Obtain \(< R > \)
 - Run \(D \) on input \(<R> \)
 - Do the opposite of what \(D \) does:
 - If \(D \) accepts \(<R> \) then reject.
 - If \(D \) rejects \(<R> \) then accept.
- Now get a contradiction, based on what \(R \) does on input \(01 \):
 - If \(R \) accepts \(01 \), then
 - \(D \) accepts \(<R> \) since \(D \) is a decider for \text{Acc}01_{\text{TM}}, so
 - \(R \) rejects \(01 \) (and everything else), by definition of \(R \).
 - If \(R \) does not accept \(01 \), then
 - \(D \) rejects \(<R> \) since \(D \) is a decider for \text{Acc}01_{\text{TM}}, so
 - \(R \) accepts \(01 \) (and everything else), by definition of \(R \).
- Contradiction. \(D \) can’t exist, so \text{Acc}01_{\text{TM}} \text{ is undecidable.}
Applications of Recursion Theorem

- Application 3: Using Recursion Theorem to prove Rice’s Theorem
 - Rice’s Theorem: Let \(P \) be a nontrivial property of Turing-recognizable languages. Let \(M_P = \{ < M > | L(M) \in P \} \). Then \(M_P \) is undecidable.
 - Nontriviality: There is some \(M_1 \) with \(L(M_1) \in P \), and some \(M_2 \) with \(L(M_2) \notin P \).
 - Implies lots of things are undecidable.
 - We already proved this; now, a new proof using the Recursion Theorem.
 - Suppose for contradiction that \(D \) is a TM that decides \(M_P \).
 - Construct machine \(R \) using the Recursion Theorem: …
Application 3: Using Recursion Theorem to prove Rice’s Theorem

• Rice’s Theorem: Let \(P \) be a nontrivial property of Turing-recognizable languages. Let \(M_P = \{ < M > | L(M) \in P \} \). Then \(M_P \) is undecidable.

• Nontriviality: \(L(M_1) \in P, L(M_2) \notin P \).

• \(D \) decides \(M_P \).

• \(R \): On input \(w \):
 – Obtain \(< R > \)
 – Run \(D \) on input \(< R > \)
 – If \(D \) accepts \(< R > \) then run \(M_2 \) on input \(w \) and do the same thing.
 – If \(D \) rejects \(< R > \) then run \(M_1 \) on input \(w \) and do the same thing.

• \(M_1 \) and \(M_2 \) are as above, in the nontriviality definition.

• \(R \) exists, by the Recursion Theorem.

• Get contradiction by considering whether or not \(L(R) \in P \):
Application 3: Using Recursion Theorem to prove Rice’s Theorem

• Rice’s Theorem: Let P be a nontrivial property of Turing-recognizable languages. Let \(M_P = \{ < M > | L(M) \in P \} \). Then \(M_P \) is undecidable.

• \(L(M_1) \in P, L(M_2) \notin P \).

• D decides \(M_P \).

• R: On input \(w \):
 – Obtain \(< R >\)
 – Run \(D \) on input \(< R >\)
 – If \(D \) accepts \(< R >\) then run \(M_2 \) on input \(w \) and do the same thing.
 – If \(D \) rejects \(< R >\) then run \(M_1 \) on input \(w \) and do the same thing.

• Get contradiction by considering whether or not \(L(R) \in P \):
 – If \(L(R) \in P \), then
 • \(D \) accepts \(< R >\), since \(D \) decides \(M_P \), so
 • \(L(R) = L(M_2) \) by definition of \(R \), so
 • \(L(R) \notin P \).
Application 3: Using Recursion
Theorem to prove Rice’s Theorem

• Rice’s Theorem: Let P be a nontrivial property of Turing-
recognizable languages. Let \(M_P = \{ < M > \mid L(M) \in P \} \). Then \(M_P \) is undecidable.
• \(L(M_1) \in P, L(M_2) \notin P \).
• D decides \(M_P \).
• R: On input \(w \):
 – Obtain \(< R > \)
 – Run D on input \(< R > \)
 – If D accepts \(< R > \) then run \(M_2 \) on input \(w \) and do the same thing.
 – If D rejects \(< R > \) then run \(M_1 \) on input \(w \) and do the same thing.
• Get contradiction by considering whether or not \(L(R) \in P \):
 – If \(L(R) \notin P \), then
 • D rejects \(< R > \), since D decides \(M_P \), so
 • \(L(R) = L(M_1) \) by definition of R, so
 • \(L(R) \in P \).
• Contradiction!
Applications of Recursion Theorem

• Application 4: Showing non-Turing-recognizability
 – Define $MIN_{TM} = \{ < M > \mid M$ is a “minimal” TM, that is, no TM with a shorter encoding recognizes the same language $\}$.
 – Theorem: MIN_{TM} is not Turing-recognizable.
 – Note: This doesn’t follow from Rice:
 • Requires non-T-recognizability, not just undecidability.
 • Besides, it’s not a language property.
 – Proof:
 • Assume for contradiction that MIN_{TM} is Turing-recognizable.
 • Then it’s enumerable, say by enumerator TM E.
 • Define TM R, using the Recursion Theorem:
 • R: On input w: …
Application 4: Non-Turing-recognizability

- $\text{MIN}_{\text{TM}} = \{ < M > | M \text{ is a “minimal” TM } \}.$
- **Theorem:** MIN_{TM} is not Turing-recognizable.
- **Proof:**
 - Assume that MIN_{TM} is Turing-recognizable.
 - Then it’s **enumerable**, say by enumerator TM E.
 - **R:** On input w:
 - Obtain $< R >$.
 - Run E, producing list $< M_1 >, < M_2 >, \ldots$ of all minimal TMs, until you find some $< M_i >$ with $|< M_i >|$ strictly greater than $|< R >|$.
 - That is, until you find a TM with a rep bigger than yours.
 - Run $M_i(w)$ and do the same thing.
 - **Contradiction:**
 - $L(R) = L(M_i)$
 - $|< R >|$ less than $|< M_i >|$.
 - Therefore, M_i is not minimal, and should not be in the list.
Proof of the Recursion Theorem: Special case
Proof of Recursion Theorem: Special Case

• Start with easier first step: Produce a TM corresponding to P_1:

 • P_1:
 – Obtain $< P_1 >$
 – Output $< P_1 >$

 • P_1 outputs its own description.

• Lemma: (Sipser Lemma 6.1): There is a computable function $q: \Sigma^* \rightarrow \Sigma^*$ such that, for any string w, $q(w)$ is the description of a TM P_w that just prints out w and halts.

• Proof: Straightforward construction. Can hard-wire w in the FSC of P_w.
Proof of RT: Special Case

• Lemma: (Sipser Lemma 6.1): There is a computable function $q: \Sigma^* \rightarrow \Sigma^*$ such that, for any string w, $q(w)$ is the description of a TM P_w that just prints out w and halts.

• Now, back to the machine that outputs its own description...

• Consists of 2 sub-machines, A and B.

• Output of A feeds into B.
• Write as $A \circ B$.
Construction of B

- B expects its input to be the representation $<M>$ of a 1-input TM (a function-computing TM, not a language recognizer).
 - If not, we don’t care what B does.
- B outputs the encoding of the combination of two machines, $P_{<M>}$ and M.
- The first machine is $P_{<M>}$, which simply outputs $<M>$.
- The second is the input machine M.

$P_{<M>} \circ M$:
Construction of B

- How can B generate \(< P_{<M>} \circ M >\)?
 - B can generate a description of \(P_{<M>}\), that is, \(<P_{<M>}\), by Lemma 6.1.
 - B can generate a description of \(M\), that is, \(<M>\), since it already has \(<M>\) as its input.
 - Once B has descriptions of \(P_{<M>}\) and \(M\), it can combine them into a single description of the combined machine \(P_{<M>} \circ M\), that is, \(< P_{<M>} \circ M >\).
Construction of A

- A is $P_{}$, the machine that just outputs $$, where B is the complicated machine constructed above.
- A has no input, just outputs $$.
Combining the Pieces

• $A \circ B$:

• Claim $A \circ B$ outputs its own description, which is $< A \circ B >$.
• Check this…
• A is $P_{}$, so the output from A to B is $$:

• Substituting B for M in B’s output:
Combining the Pieces

• $A \circ B$:

 ![Diagram](image)

• Claim $A \circ B$ outputs its own description, which is $< A \circ B >$.

 ![Diagram](image)

• The output of $A \circ B$ is, therefore, $< P_{} \circ B > = < A \circ B >$.

• As needed!

• $A \circ B$ outputs its own description, $< A \circ B >$.
Proof of the Recursion Theorem: General case
Proof of the RT: General case

• So, we have a machine that outputs its own description.
• A curiosity---this is not the general RT.
• RT says not just that:
 – There is a TM that outputs its own description.
• But that:
 – There are TMs that can use their own descriptions, in “arbitrary ways”.
• The “arbitrary ways” are captured by the machine T in the RT statement.

\[t(<M>, w) \]
The Recursion Theorem

- **Recursion Theorem:**

 Let T be a TM that computes a (possibly partial) 2-argument function $t: \Sigma^* \times \Sigma^* \rightarrow \Sigma^*$. Then there is another TM R that computes the function $r: \Sigma^* \rightarrow \Sigma^*$, where for any w, $r(w) = t(<R>, w)$.

```plaintext
<\text{T}>
\quad \downarrow t(<\text{M}>, w)
\quad \downarrow \quad w
\quad \downarrow \quad t(<\text{R}>, w)
\quad \downarrow \quad \text{R}
```

```plaintext
<\text{M}>
\quad \downarrow w
\quad \downarrow \quad t(<\text{M}>, w)
\quad \downarrow \quad \text{T}
\quad \downarrow \quad w
\quad \downarrow \quad t(<\text{R}>, w)
\quad \downarrow \quad \text{R}
```
The Recursion Theorem

• **Recursion Theorem:**

Let T be a TM that computes a (possibly partial) 2-argument function $t: \Sigma^* \times \Sigma^* \rightarrow \Sigma^*$.

Then there is another TM R that computes the function $r: \Sigma^* \rightarrow \Sigma^*$, where for any w, $r(w) = t(<R>, w)$.

• **Construct R from:**
 – The given T, and
 – Variants of A and B from the special-case proof.
Proof of RT: General Case

- R looks like:

 [Diagram of A → B → T]

- Write this as \((A \circ B)^{\circ 1} T\)
 - The \(^{\circ 1}\) means that the output from \((A \circ B)\) connects to the first (top) input line of T.
Proof of RT: General Case

• $R = (A \circ B)^{\circ 1} T$

• New A: $P_{<B^{\circ 1} T>}$, where $B^{\circ 1} T$ means:
Proof of RT: General Case

• New B:

• Like B in the special case, but now M is a 2-input TM.
• \(P_{<M>^{\circ1} M} \): 1-input TM, which uses output of \(P_{<M>} \) as first input of M.
Combining the Pieces

- $R = (A \circ B) \circ_1 T$

- Claim R outputs $t(<R>, w)$:

- A is $P_{B \circ_1 T}$, so the output from A to B is $<B \circ_1 T>$:

- Now recall definition of B:

- Plug in $B \circ_1 T$ for M in B’s input, and obtain output for B.
Combining the Pieces

• B’s output = \(< A \circ T > = < R >\):

• Now combine with T, plugging in R for M in T’s input:

\[t(<R>,w) \]
Combining the Pieces

Thus, \(R = (A \circ B) \circ T \), on input \(w \), produces \(t(<R>,w) \), as needed for the Recursion Theorem.
Next time…

• More on computability theory
• **Reading:**
 – "Computing Machinery and Intelligence" by Alan Turing:

 http://www.loebner.net/Prizef/TuringArticle.html