6.045: Automata, Computability, and Complexity
Or, GITCS

Class 12
Nancy Lynch
Today: Complexity Theory

• First part of the course: Basic models of computation
 – Circuits, decision trees
 – DFAs, NFAs:
 • Restricted notion of computation: no auxiliary memory, just one pass over input.
 • Yields restricted class of languages: regular languages.

• Second part: Computability
 – Very general notion of computation.
 – Machine models like Turing machines, or programs in general (idealized) programming languages.
 – Unlimited storage, multiple passes over input, compute arbitrarily long, possibly never halt.
 – Yields large language classes: Turing-recognizable = enumerable, and Turing-decidable.

• Third part: Complexity theory
Complexity Theory

• First part of the course: Basic models of computation
• Second part: Computability
• Third part: Complexity theory
 – A middle ground.
 – Restrict the general TM model by limiting its use of resources:
 • Computing time (number of steps).
 • Space = storage (number of tape squares used).
 – Leads to interesting subclasses of the Turing-decidable languages, based on specific bounds on amounts of resources used.
 – Compare:
 • Computability theory answers the question “What languages are computable (at all)?”
 • Complexity theory answers “What languages are computable with particular restrictions on amount of resources?”
Complexity Theory

• Topics
 – Examples of time complexity analysis (informal).
 – Asymptotic function notation: O, o, Ω, Θ
 – Time complexity classes
 – P, polynomial time
 – Languages not in P
 – Hierarchy theorems

• Reading:
 – Sipser, Sections 7.1, 7.2, and a bit from 9.1.

• Next:
 – Midterm, then Section 7.3 (after the break).
Examples of time complexity analysis
Examples of time complexity analysis

• Consider a basic 1-tape Turing machine M that decides membership in the language $L = \{0^k1^k \mid k \geq 0\}$:
 - M first checks that its input is in 0^*1^*, using one left-to-right pass.
 - Returns to the beginning (left).
 - Then does repeated passes, each time crossing off one 0 and one 1, until it runs out of at least one of them.
 - If it runs out of both on the same pass, accepts, else rejects.

• **Q:** How much time until M halts?
• Depends on the particular input.
• **Example:** $0111\ldots1110$ (length n)
 - Approximately n steps to reject---not in 0^*1^*,
• **Example:** $00\ldots011\ldots1$ ($n/2$ 0s and $n/2$ 1s)
 - Approximately (at most) $2n + (n/2)2n = 2n + n^2$ steps to accept.
Time complexity analysis

- $L(M) = \{0^k1^k \mid k \geq 0\}$.
- Time until M halts depends on the particular input.
- $0111\ldots1110$ (length n)
 - Approximately n steps to reject---not in 0^*1^*,
- $00\ldots011\ldots1$ ($n/2$ 0s and $n/2$ 1s)
 - Approximately (at most) $2n + n^2$ steps to accept.
- It’s too complicated to determine exactly how many steps are required for every input.
- So instead, we:
 - Get a close upper bound, not an exact step count.
 - Express the bound as a function of the input length n, thus grouping together all inputs of the same length and considering the max.
 - Often ignore constant factors and low-order terms.
- So, we describe the time complexity of M as $O(n^2)$.
 - At most some constant times n^2.
Time complexity analysis

• $L(M) = \{0^k1^k \mid k \geq 0\}$.
• Time complexity of machine $M = O(n^2)$.
• Q: Can we do better with a multitape machine?
• Yes, with 2 tapes:
 – After checking 0^*1^*, the machine copies the 0s to the second tape.
 – Then moves 2 heads together, one scanning the 0s on the second tape and one scanning the 1s on the first tape.
 – Check that all the symbols match.
 – Time $O(n)$, proportional to n.
Time complexity analysis

• $L(M) = \{0^k1^k \mid k \geq 0\}$.
• 1-tape machine: $O(n^2)$, 2-tape machine: $O(n)$.
• Q: Can we beat $O(n^2)$ with a 1-tape machine?
• Yes, can get $O(n \log n)$:
 – First check 0^*1^*, as before, $O(n)$ steps.
 – Then perform marking phases, as long as some unmarked 0 and some unmarked 1 remain.
 – In each marking phase:
 • Scan to see whether # of unmarked 0s \equiv # of unmarked 1s, mod 2.
 – That is, see whether they have the same parity.
 • If not, then reject, else continue.
 • Scan again, marking every other 0 starting with the first and every other 1 starting with the first.
 – After all phases are complete:
 • If just 0s or just 1s remain, then reject
 • If no unmarked symbols remain, then accept.
Time complexity analysis

- **O(n log n) algorithm:**
 - Check 0^*1^*.
 - Perform marking phases, as long as some unmarked 0 and some unmarked 1 remain.
 - In each marking phase:
 - Scan to see if # of unmarked 0s \equiv # of unmarked 1s, mod 2; if not, then reject, else continue.
 - Scan again, marking every other 0 starting with the first and every other 1 starting with the first.
 - If just 0s or just 1s remain, then reject, else accept.

- **Example: 00…011…1 (25 0s and 25 1s)**
 - Correct form, 0^*1^*.
 - Phase 1: Same parity (odd), marking leaves 12 0s and 12 1s.
 - Phase 2: Same parity (even), marking leaves 6, 6.
 - Phase 3: Same parity (even), marking leaves 3, 3.
 - Phase 4: Same parity (odd), marking leaves 1, 1.
 - Phase 5: Same parity (odd), marking leaves 0, 0.
 - Accept
Time complexity analysis

• Example: 00…011…1 (25 0s and 25 1s)
 – Correct form, 0*1*.
 – Phase 1: Same parity (odd), marking leaves 12 0s and 12 1s.
 – Phase 2: Same parity (even), marking leaves 6, 6.
 – Phase 3: Same parity (even), marking leaves 3, 3.
 – Phase 4: Same parity (odd), marking leaves 1, 1.
 – Phase 5: Same parity (odd), marking leaves 0, 0
 – Accept

• Odd parity leads to remainder 1 on division by 2, even parity leads to remainder 0.

• Can read off odd-even parity designations to get binary representations of the numbers, starting with final phase for high-order bit:
 – 5: odd; 4: odd; 3: even; 2: even; 1: odd
 – Yields 1 1 0 0 1, binary representation of 25

• If the algorithm accepts, it means the 2 numbers have the same binary representation, so they are equal.
Time complexity analysis

- **Example: 00…011…1** (17 0s and 25 1s)
 - Correct form, 0*1*.
 - Phase 1: Same parity (odd), marking leaves 8 0s and 12 1s.
 - Phase 2: Same parity (even), marking leaves 4, 6.
 - Phase 3: Same parity (even), marking leaves 2, 3.
 - Phase 4: Different parity, reject
 - Don’t complete this, so don’t generate the complete binary representation of either number.
Time complexity analysis

- **Algorithm**
 - Check 0^1.
 - Perform marking phases, as long as some unmarked 0 and some unmarked 1 remain.
 - In each marking phase:
 - Scan to see if $\#$ of unmarked 0s $\equiv \#$ of unmarked 1s, mod 2; if not, then reject, else continue.
 - Scan again, marking every other 0 starting with the first and every other 1 starting with the first.
 - If just 0s or just 1s remain, then reject, else accept.

- **Complexity analysis:**
 - Number of phases is $O(\log_2 n)$, since we (approximately) halve the number of unmarked 0s and unmarked 1s at each phase.
 - Time for each phase: $O(n)$.
 - Total: $O(n \log n)$.

- This analysis is informal; now define O, etc., more carefully and then revisit the example.
Asymptotic function notation:
\(O, \ominus, \Omega, \Theta \)
Asymptotic function notation

- **Definition: O (big-O)**
 - Let \(f, g \) be two functions: \(N \to \mathbb{R}^{\geq 0} \).
 - We write \(f(n) = O(g(n)) \), and say “\(f(n) \) is big-O of \(g(n) \)” if the following holds:
 - There is a positive real \(c \), and a positive integer \(n_0 \), such that \(f(n) \leq c \cdot g(n) \) for every \(n \geq n_0 \).
 - That is, \(f(n) \) is bounded from above by a constant times \(g(n) \), for all sufficiently large \(n \).
- Often used for complexity upper bounds.
- **Example:** \(n + 2 = O(n) \); can use \(c = 2, n_0 = 2 \).
- **Example:** \(3n^2 + n = O(n^2) \); can use \(c = 4, n_0 = 1 \).
- **Example:** Any degree-\(k \) polynomial with nonnegative coefficients, \(p(n) = a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n + a_0 = O(n^k) \)
 - Thus, \(3n^4 + 6n^2 + 17 = O(n^4) \).
More big-O examples

• Definition: Let $f, g : \mathbb{N} \to \mathbb{R}_{\geq 0}$
 - $f(n) = O(g(n))$ means that there is a positive real c, and a positive integer n_0, such that $f(n) \leq c g(n)$ for every $n \geq n_0$.

• Example: $3n^4 = O(n^7)$, though this is not the tightest possible statement.

• Example: $3n^7 \neq O(n^4)$.

• Example: $\log_2(n) = O(\log_e(n))$; $\log_a(n) = O(\log_b(n))$ for any a and b
 - Because logs to different bases differ by a constant factor.

• Example: $2^{3+n} = O(2^n)$, because $2^{3+n} = 8 \times 2^n$

• Example: $3^n \neq O(2^n)$
Other notation

• **Definition:** \(\Omega \) (big-Omega)
 – Let \(f, g \) be two functions: \(\mathbb{N} \rightarrow \mathbb{R}_{\geq 0} \)
 – We write \(f(n) = \Omega(g(n)) \), and say “\(f(n) \) is big-Omega of \(g(n) \)” if the following holds:
 • There is a positive real \(c \), and a positive integer \(n_0 \), such that \(f(n) \geq c \cdot g(n) \) for every \(n \geq n_0 \).
 • That is, \(f(n) \) is bounded from below by a positive constant times \(g(n) \), for all sufficiently large \(n \).

• Used for complexity lower bounds.

• **Example:** \(3n^2 + 4n \log(n) = \Omega(n^2) \)
• **Example:** \(3n^7 = \Omega(n^4) \).
• **Example:** \(\log_e(n) = \Omega(\log_2(n)) \)
• **Example:** \(3^n = \Omega(2^n) \)
Definition: \(\Theta \) (Theta)

- Let \(f, g \) be two functions: \(N \rightarrow \mathbb{R}_{\geq 0} \)
- We write \(f(n) = \Theta(g(n)) \), and say “\(f(n) \) is Theta of \(g(n) \)” if \(f(n) = O(g(n)) \) and \(f(n) = \Omega(g(n)) \).
- Equivalently, there exist positive reals \(c_1, c_2 \), and positive integer \(n_0 \) such that \(c_1 g(n) \leq f(n) \leq c_2 g(n) \) for every \(n \geq n_0 \).

Example: \(3n^2 + 4n \log(n) = \Theta(n^2) \)

Example: \(3n^4 = \Theta(n^4) \).

Example: \(3n^7 \neq \Theta(n^4) \).

Example: \(\log_e(n) = \Theta(\log_2(n)) \)

Example: \(3^n \neq \Theta(2^n) \)
Plugging asymptotics into formulas

• Sometimes we write things like $2^{\Theta(\log_2 n)}$
• What does this mean?
• Means the exponent is some function $f(n)$ that is $\Theta(\log n)$, that is, $c_1 \log(n) \leq f(n) \leq c_2 \log(n)$ for every $n \geq n_0$.
• So $2^{c_1 \log(n)} \leq 2^{\Theta(\log_2 n)} \leq 2^{c_2 \log(n)}$
• In other words, $n^{c_1} \leq 2^{\Theta(\log_2 n)} \leq n^{c_2}$
• Same as $n^{\Theta(1)}$.
• **Definition: o (Little-o)**
 - Let f, g be two functions: $N \to \mathbb{R}_{\geq 0}$
 - We write $f(n) = o(g(n))$, and say “$f(n)$ is little-o of $g(n)$” if for every positive real c, there is some positive integer n_0, such that $f(n) < c \cdot g(n)$ for every $n \geq n_0$.
 - In other words, no matter what constant c we choose, for sufficiently large n, $f(n)$ is less than $g(n)$.
 - In other words, $f(n)$ grows at a slower rate than any constant times $g(n)$.
 - In other words, $\lim_{n \to \infty} f(n)/g(n) = 0$.

• **Example:** $3n^4 = o(n^7)$
• **Example:** $\sqrt{n} = o(n)$
• **Example:** $n \log n = o(n^2)$
• **Example:** $2^n = o(3^n)$
Back to the TM running times…

- Running times (worst case over all inputs of the same length n) of the 3 TMs described earlier:
 - Simple 1-tape algorithm: $\Theta(n^2)$
 - 2-tape algorithm: $\Theta(n)$
 - More clever 1-tape algorithm: $\Theta(n \log n)$

- More precisely, consider any Turing machine M that decides a language.

- Define the running time function $t_M(n)$ to be:
 - $\max_{w \in \Sigma^n} t'_M(w)$, where
 - $t'_M(w)$ is the exact running time (number of steps) of M on input w.

- Then for these three machines, $t_M(n)$ is $\Theta(n^2)$, $\Theta(n)$, and $\Theta(n \log n)$, respectively.
Time Complexity Classes
Time Complexity Classes

• Classify decidable languages according to upper bounds on the running time for TMs that decide them.

• Definition: Let \(t: \mathbb{N} \rightarrow \mathbb{R}^{\geq 0} \) be a (total) function. Then \(\text{TIME}(t(n)) \) is the set of languages:
 \[
 \{ L \mid L \text{ is decided by some } O(t(n))-\text{time Turing machine} \}
 \]

• Call this a “time-bounded complexity class”.

• Notes:
 – Notice the \(O \)---allows some slack.
 – To be careful, we need to specify which kind of TM model we are talking about; assume basic 1-tape.

• Complexity Theory studies:
 – Which languages are in which complexity classes.
 • E.g., is the language PRIMES in \(\text{TIME}(n^5) \)?
 – How complexity classes are related to each other.
 • E.g., is \(\text{TIME}(n^5) = \text{TIME}(n^6) \), or are there languages that can be decided in time \(O(n^6) \) but not in time \(O(n^5) \)?
Time Complexity Classes

- A problem: Running times are model-dependent.
- E.g., $L = \{0^k1^k \mid k \geq 0\}$:
 - On 1-tape TM, can decide in time $O(n \log n)$.
 - On 2-tape TM, can decide in time $O(n)$.
- To be definite, we’ll define the complexity classes in terms of 1-tape TMs (as Sipser does); others use multi-tape, or other models like Random-Access Machines (RAMs).
- Q: Is this difference important?
- Only up to a point:
 - If $L \in \text{TIME}(f(n))$ based on any “standard” machine model, then also $L \in \text{TIME}(g(n))$, where $g(n) = O(p(f(n)))$ for some polynomial p, based on any other “standard” machine model.
 - Running times for L in any two standard models are polynomial-related.
- Example: Single-tape vs. multi-tape Turing machines
Time Complexity Classes

• If $L \in \text{TIME}(f(n))$ based on any “standard” machine model, then also $L \in \text{TIME}(g(n))$, where $g(n) = O(p(f(n)))$ for some polynomial p, based on any other “standard” machine model.

• Example: 1-tape vs. multi-tape Turing machines
 – 1-tape \rightarrow multi-tape with no increase in complexity.
 – Multi-tape \rightarrow 1-tape: If $t(n) \geq n$ then every $t(n)$-time multi-tape TM has an equivalent $O(t^2(n))$-time 1-tape TM.
 – Proof idea:
 • 1-tape TM simulates multi-tape TM.
 • Simulates each step of multi-tape TM using 2 scans over non-blank portion of tapes, visiting all heads, making all changes.
 – Q: What is the time complexity of the simulating 1-tape TM? That is, how many steps does the 1-tape TM use to simulate the $t(n)$ steps of the multi-tape machine?
Time Complexity Classes

- **Example:** 1-tape vs. multi-tape Turing machines
 - Multi-tape → 1-tape: If \(t(n) \geq n \) then every \(t(n) \)-time multi-tape TM has an equivalent \(O(t^2(n)) \)-time 1-tape TM.
 - 1-tape TM simulates multi-tape TM; simulates each step using 2 scans over non-blank portion of tapes, visiting all heads, making all changes.
 - Q: What is the time complexity of the 1-tape TM?
 - Q: How big can the non-blank portion of the multi-tape TM’s tapes become?
 - Initially \(n \), for the input.
 - In \(t(n) \) steps, no bigger than \(t(n) \), because that’s how far the heads can travel (starts at left).
 - So the number of steps by the 1-tape TM is at most:
 \[
 t(n) \times c \, t(n), \quad \text{hence } O(t^2(n)).
 \]

Number of steps of multi-tape machine

Steps taken by the scans, to emulate one step of the multi-tape machine.
Time Complexity Classes

• If \(L \in \text{TIME}(f(n)) \) based on any “standard” machine model, then also \(L \in \text{TIME}(g(n)) \), where \(g(n) = O(p(f(n))) \) for some polynomial \(p \), based on any other “standard” machine model.

• Slightly-idealized versions of real computers, programs in standard languages, other “reasonable” machine models, can be emulated by basic TMs with only polynomial increase in running time.

• Important exception: Nondeterministic Turing machines (or other nondeterministic computing models)
 – For nondeterministic TMs, running time is usually measured by max number of steps on any branch.
 – A bound of \(t(n) \) on the maximum number of steps on any branch translates into \(2^{O(t(n))} \) steps for basic deterministic TMs.
P, Polynomial Time
P, Polynomial Time

• A formal way to define fast computability.
• Because of simulation results, polynomial differences are considered to be unimportant for (deterministic) TMs.
• So our definition of fast computability ignores polynomial differences.
• **Definition:** The class P of languages that are decidable in polynomial time is defined by:

$$P = \bigcup_{p \text{ a poly}} \text{TIME}(p(n)) = \bigcup_{k \geq 0} \text{TIME}(n^k)$$

• **Notes:**
 - These time-bounded language classes are defined with respect to basic (1-tape, 1-head) Turing machines.
 - Simulation results imply that we could have used any “reasonable” deterministic computing model and get the same language class.
 - Robust notion.
P, Polynomial Time

• Definition: The class P of languages that are decidable in polynomial time is defined by:
 \[P = \bigcup_{p \text{ poly}} \text{TIME}(p(n)) = \bigcup_{k \geq 0} \text{TIME}(n^k) \]
• P plays a role in complexity theory loosely analogous to that of decidable languages in computability.
• Recall Church-Turing thesis:
 – If L is decidable using some reasonable model of computation, then it is decidable using any reasonable model of computation.
• Modified Church-Turing thesis:
 – If L is decidable in polynomial time using some reasonable deterministic model of computation, then it is decidable in polynomial time using any reasonable deterministic model of computation.
• This is not a theorem---rather, a philosophical statement.
• Can think of this as defining what a reasonable model is.
• We’ll focus on the class P for much of our work on complexity theory.
P, Polynomial Time

• We’ll focus on the class P for much of our work on complexity theory.

• Q: Why is P a good language class to study?

• It’s model-independent (for reasonable models).

• It’s scalable:
 – Constant-factor dependence on input size.
 – E.g., an input that’s twice as long requires only c times as much time, for some constant c (depends on degree of the polynomial).

 • E.g., consider time bound n^3.
 • Input of length n takes time n^3.
 • Input of length $2n$ takes time $(2n)^3 = 8n^3$, $c = 8$.

 – Works for all polynomials, any degree.
P, Polynomial Time

• Q: Why is P a good language class to study?
• It’s model-independent (for reasonable models).
• It’s scalable.
• It has nice composition properties:
 – Composing two polynomials yields another polynomial.
 – This property will be useful later, when we define polynomial-time reducibilities.
 – Preview: $A \leq_p B$ means that there exists a polynomial-time computable function f such that $x \in A$ if and only if $f(x) \in B$.
 – Desirable theorem: $A \leq_p B$ and $B \in P$ imply $A \in P$.
 – Proof:
 • Suppose B is decidable in time $O(n^k)$.
 • Suppose the reducibility function f is computable in time $O(n^l)$.
P, Polynomial Time

• P has **nice composition properties:**

 – A $\leq_p B$ means that there’s a polynomial-time computable function f such that $x \in A$ if and only if $f(x) \in B$.

 – Desirable theorem: $A \leq_p B$ and $B \in P$ imply $A \in P$.

 – Proof:

 • Suppose B is decidable in time $O(n^k)$, and f is computable in time $O(n^l)$.

 • How much time does it take to decide membership in A by reduction to B?

 • Given x of length n, time to compute $f(x)$ is $O(n^l)$.

 • Moreover, $|f(x)| = O(n^l)$, since there’s not enough time to generate a bigger result.

 • Now run B’s decision procedure on $f(x)$.

 • Takes time $O(|f(x)|^k) = O((n^l)^k) = O(n^{lk})$.

 • Another polynomial, so A is decidable in poly time, so $A \in P$.
P, Polynomial Time

• Q: Why is P a good language class to study?
 – It’s model-independent (for reasonable models).
 – It’s scalable.
 – It has nice composition properties.

• Q: What are some limitations?
 – Includes too much:
 • Allows polynomials with arbitrarily large exponents and coefficients.
 • Time $10,000,000 n^{10,000,000}$ isn’t really feasible.
 • In practice, running times are usually low degree polynomials, up to about $O(n^4)$.
 • On the other hand, proving a non-polynomial lower bound is likely to be meaningful.
P, Polynomial Time

• Q: Why is P a good language class to study?
 – It’s model-independent (for reasonable models).
 – It’s scalable.
 – It has nice composition properties.

• Q: What are some limitations?
 – Includes too much.
 – Excludes some things:
 • Considers worst case time complexity only.
 – Some algorithms may work well enough in most cases, or in common cases, even though the worst case is exponential.
 • Random choices, with membership being decided with high probability rather than with certainty.
 • Quantum computing.
P, Polynomial Time

• **Example:** A language in P.
 – PATH = \{ < G, s, t > | G = (V, E) is a digraph that has a directed path from s to t \}
 – Represent G by adjacency matrix (|V| rows and |V| columns, 1 indicates an edge, 0 indicates no edge).
 – **Brute-force algorithm:** Try all paths of length \(\leq |V| \).
 • Exponential running time in input size, not polynomial.
 – **Better algorithm:** BFS of G starting from s.
 • Mark new nodes accessible from already-marked nodes, until no new nodes are found.
 • Then see if t is marked.
 • Complexity analysis:
 – At most |V| phases are executed.
 – Each phase takes polynomial time to explore marked nodes and their outgoing edges.
A Language Not in P
A Language Not in P

• **Q:** Is every language in P?
• No, because $P \subseteq$ decidable languages, and not every language is decidable.

• **Q:** Is every decidable language in P?
• No again, but it takes some work to show this.

• **Theorem:** For any computable function t, there is a language that is decidable, but cannot be decided by any basic Turing machine in time $t(n)$.

• **Proof:**
 – Fix computable function t.
 – Define language $\text{Acc}(t)$
 \[\text{Acc}(t) = \{ <M> \mid \text{M is a basic TM and M accepts } <M> \text{ in } \leq t(|<M>|) \text{ steps} \} \]
 – **Claim 1:** $\text{Acc}(t)$ is decidable.
 – **Claim 2:** $\text{Acc}(t)$ is not decided by any basic TM in $\leq t(n)$ steps.
• **Theorem:** For any computable function t, there is a language that is decidable, but cannot be decided by any basic Turing machine in time $t(n)$.

• **Proof:**
 - $\text{Acc}(t) = \{ <M> | \text{M is a basic TM that accepts } <M> \text{ in } \leq t(|<M>|) \text{ steps} \}$.
 - **Claim 1:** $\text{Acc}(t)$ is decidable.
 • Given $<M>$, simulate M on $<M>$ for $t(|<M>|)$ simulated steps and see if it accepts.
 - **Claim 2:** $\text{Acc}(t)$ is not decided by any basic TM in $\leq t(n)$ steps.
 • Use a diagonalization proof, like that for Acc_{TM}.
 • Assume $\text{Acc}(t)$ is decided in time $\leq t(n)$ by some basic TM.
 - Here, $n = |<M>|$ for input $<M>$.
A Language Not in P

• **Theorem:** For any computable function t, there is a language that is decidable, but cannot be decided by any basic Turing machine in time $t(n)$.

• $\text{Acc}(t) = \{ <M> \mid M \text{ is a basic TM that accepts } <M> \text{ in } \leq t(|<M>|) \text{ steps} \}$.

• **Claim 2:** $\text{Acc}(t)$ is not decided by any basic TM in $\leq t(n)$ steps.

• **Proof:**
 – Assume $\text{Acc}(t)$ is decided in time $\leq t(n)$ by some basic TM.
 – Then $\text{Acc}(t)^c$ is decided in time $\leq t(n)$, by another basic TM.
 • Interchange q_{acc} and q_{rej} states.
 – Let M_0 be a basic TM that decides $\text{Acc}(t)^c$ in time $\leq t(n)$.
 • That means $t(n)$ steps of M_0, not $t(n)$ simulated steps.
 – Thus, for every basic Turing machine M:
 • If $<M> \in \text{Acc}(t)^c$, then M_0 accepts $<M>$ in time $\leq t(|<M>|)$.
 • If $<M> \in \text{Acc}(t)$, then M_0 rejects $<M>$ in time $\leq t(|<M>|)$.
A Language Not in P

- **Theorem:** For any computable function t, there is a language that is decidable, but cannot be decided by any basic Turing machine in time $t(n)$.

- $\text{Acc}(t) = \{ <M> | M \text{ is a basic TM that accepts } <M> \text{ in } \leq t(|<M>|) \text{ steps} \}$.

- **Claim 2:** $\text{Acc}(t)$ is not decided by any basic TM in $\leq t(n)$ steps.

- **Proof:**
 - Assume $\text{Acc}(t)$ is decided in time $\leq t(n)$ by some basic TM.
 - $\text{Acc}(t)^c$ is decided in time $\leq t(n)$, by basic TM M_0.
 - Thus, for every basic Turing machine M:
 - If $<M> \in \text{Acc}(t)^c$, then M_0 accepts $<M>$ in time $\leq t(|<M>|)$.
 - If $<M> \in \text{Acc}(t)$, then M_0 rejects $<M>$ in time $\leq t(|<M>|)$.
 - Thus, for every basic Turing machine M:
 - $<M> \in \text{Acc}(t)^c$ iff M_0 accepts $<M>$ in time $\leq t(|<M>|)$.
A Language Not in P

• **Theorem:** For any computable function \(t \), there is a language that is decidable, but cannot be decided by any basic Turing machine in time \(t(n) \).

• \(\text{Acc}(t) = \{ <M> \mid M \text{ is a basic TM that accepts } <M> \text{ in } \leq t(|<M>|) \text{ steps} \} \).

• **Claim 2:** \(\text{Acc}(t) \) is not decided by any basic TM in \(\leq t(n) \) steps.

• **Proof:**
 – Assume \(\text{Acc}(t) \) is decided in time \(\leq t(n) \) by some basic TM.
 – \(\text{Acc}(t)^c \) is decided in time \(\leq t(n) \), by basic TM \(M_0 \).
 – For every basic Turing machine \(M \):
 \[<M> \in \text{Acc}(t)^c \text{ iff } M_0 \text{ accepts } <M> \text{ in time } \leq t(|<M>|). \]
 – However, by definition of \(\text{Acc}(t) \), for every basic TM \(M \):
 \[<M> \in \text{Acc}(t)^c \text{ iff } M \text{ does not accept } <M> \text{ in time } \leq t(|<M>|). \]
A Language Not in P

• **Claim 2:** Acc(t) is not decided by any basic TM in \(\leq t(n) \) steps.

• **Proof:**
 - Assume Acc(t) is decided in time \(\leq t(n) \) by some basic TM.
 - Acc(t)\(^c\) is decided in time \(\leq t(n) \), by basic TM \(M_0 \).
 - For every basic Turing machine M:
 - \(<M> \in \text{Acc(t)}\(^c\) \iff M_0 \) accepts \(<M> \) in time \(\leq t(|<M>|) \).
 - \(<M> \in \text{Acc(t)}\(^c\) \iff M \) does not accept \(<M> \) in time \(\leq t(|<M>|) \).
 - Now plug in \(M_0 \) for M in both statements:
 - \(<M_0> \in \text{Acc(t)}\(^c\) \iff M_0 \) accepts \(<M_0> \) in time \(\leq t(|<M_0>|) \).
 - \(<M_0> \in \text{Acc(t)}\(^c\) \iff M_0 \) does not accept \(<M_0> \) in time \(\leq t(|<M_0>|) \).
 - Contradiction!
A Language Not in P

- Acc(t) = { <M> | M is a basic TM that accepts <M> in \(\leq t(|<M>|) \) steps }.
- We have proved:
 - Theorem: For any computable function t, there is a language that is decidable, but cannot be decided by any basic Turing machine in time t(n).
- Proof:
 - Claim 1: Acc(t) is decidable.
 - Claim 2: Acc(t) is not decided by any basic TM in \(\leq t(n) \) steps.
- Thus, for every computable function t(n), no matter how large (exponential, double-exponential,...), there are decidable languages not decidable in time t(n).
- In particular, there are decidable languages not in P.
Hierarchy Theorems
Hierachy Theorems

- Simplified summary, from Sipser Section 9.1.
- $\text{Acc}(t) = \{ <M> | M \text{ is a basic TM that accepts } <M> \text{ in } \leq t(|<M>|) \text{ steps } \}$

- We have just proved that, for any computable function t, the language $\text{Acc}(t)$ is decidable, but cannot be decided by any basic TM in time $t(n)$.
- **Q:** How much time does it take to compute $\text{Acc}(t)$?
- More than $t(n)$, but how much more?
- Technical assumption: t is “time-constructible”, meaning it can be computed in an amount of time that is not much bigger than t itself.
 - Examples: Typical functions, like polynomials, exponentials, double-exponentials,…
Hierarchy Theorems

• \(\text{Acc}(t) = \{ <M> \mid M \text{ is a basic TM that accepts } <M> \text{ in } \leq t(|<M>|) \text{ steps} \} \)

• Q: How much time does it take to compute \(\text{Acc}(t) \)?

• Theorem (informal statement): If \(t \) is any time-constructible function, then \(\text{Acc}(t) \) can be decided by a basic TM in time not much bigger than \(t(n) \).
 – E.g., approximately \(t^2(n) \).
 – Sipser (Theorem 9.10) gives a tighter bound.

• Q: Why exactly does it take much more than \(t(n) \) time to run an arbitrary machine \(M \) on \(<M> \) for \(t(|<M>|) \) simulated steps?

• We must simulate an arbitrary machine \(M \) using a fixed “universal” TM, with a fixed state set, fixed alphabet, etc.
Hierachy Theorems

• **Theorem (informal):** If t is any time-constructible function, then Acc(t) can be decided by a basic TM in time not much bigger than t(n).
 - E.g., approximately $t^2(n)$.
• **Implies that there is:**
 - A language decidable in time n^2 but not time n.
 - A language decidable in time n^6 but not time n^3.
 - A language decidable in time 4^n but not time 2^n.
• **Extend this reasoning to show:**
 - $\text{TIME}(n) \neq \text{TIME}(n^2) \neq \text{TIME}(n^4) \ldots$
 - $\neq \text{TIME}(2^n) \neq \text{TIME}(4^n) \ldots$
• **A hierarchy of distinct language classes.**
Next time…

• The Midterm!