Class 7
Nancy Lynch
Today

• Basic computability theory

• Topics:
 – Decidable and recognizable languages
 – Recursively enumerable languages
 – Turing Machines that solve problems involving FAs
 – Undecidability of the Turing machine acceptance problem
 – Undecidability of the Turing machine halting problem

• Reading: Sipser, Sections 3.1, 3.2, Chapter 4

• Next: Sections 5.1, 5.2
Decidable and Recognizable Languages
Decidable and recognizable languages

- Last time, we began studying the important notion of computability.
- As a concrete model of computation, we introduced basic one-tape, one-head Turing machines.
- Also discussed some variants.
- Claimed they are all equivalent, so the notion of computability is robust.
- Today: Look more carefully at the notions of computability and equivalence.
Decidable and recognizable languages

• Assume: TM has accepting state q_{acc} and rejecting state q_{rej}.
• Definition: TM M recognizes language L provided that $L = \{ w \mid M \text{ on } w \text{ reaches } q_{acc} \} = \{ w \mid M \text{ accepts } w \}$.
• Another important notion of computability:

 • Definition: TM M decides language L provided that both of the following hold:
 – On every w, M eventually reaches either q_{acc} or q_{rej}.
 – $L = \{ w \mid M \text{ on } w \text{ reaches } q_{acc} \}$.

• Thus, if M recognizes L, then:
 – Words in L lead to q_{acc}.
 – Words not in L either lead to q_{rej} or never halt (“loop”).

• Whereas if M decides L, then:
 – Words in L lead to q_{acc}.
 – Words not in L lead to q_{rej}. Always halts
Decidable and recognizable languages

- **Theorem 1:** If M decides L then M recognizes L.
- Obviously.
- But not necessarily vice versa.
- In fact, these two notions define **different language classes**:
- **Definition:**
 - L is **Turing-recognizable** if there is some TM that recognizes L.
 - L is **Turing-decidable** if there is some TM that decides L.
- The classes of Turing-recognizable and Turing-decidable languages are different.
- **Theorem 2:** If L is Turing-decidable then L is Turing-recognizable.
- Obviously.
- But the other direction does not hold---there are languages that are Turing-recognizable but not Turing-decidable.
- We’ll see some examples soon.
Decidable and recognizable languages

- **Theorem 3:** If L is Turing-decidable then L^c is T-decidable.

- **Proof:**
 - Suppose that M decides L.
 - Design a new machine M' that behaves just like M, but:
 - If M accepts, M' rejects.
 - If M rejects, M' accepts.
 - Formally, can do this by interchanging q_{acc} and q_{rej}.
 - Then M' decides L^c.
Decidable and recognizable languages

• A basic connection between Turing-recognizable and Turing-decidable languages:
 • Theorem 4: L is Turing decidable if and only if L and \(L^c \) are both Turing-recognizable.
 • Proof: \(\Rightarrow \)
 – Suppose that L is Turing-decidable.
 – Then L is Turing-recognizable, by Theorem 2.
 – Also, \(L^c \) is Turing-decidable, by Theorem 3.
 – So \(L^c \) is Turing-recognizable, by Theorem 2.
 • Proof: \(\Leftarrow \)
 – Given \(M_1 \) recognizing L, and \(M_2 \) recognizing \(L^c \).
 – Produce a Turing Machine M that decides whether or not its input w is in L or \(L^c \).
Decidable and recognizable languages

- **Theorem 4:** L is Turing decidable if and only if L and L^c are both Turing-recognizable.

- **Proof:** \iff

 - Given M_1 recognizing L, and M_2 recognizing L^c.
 - Produce a Turing Machine M that decides whether or not its input w is in L or L^c.
 - **Idea:** Run both M_1 and M_2 on w.
 - One must accept.
 - If M_1 accepts, then M accepts.
 - If M_2 accepts, then M rejects.
 - But, we can't run M_1 and M_2 one after the other because the first one might never halt.
 - Run them in parallel, until one accepts?
 - **How?** We don't have a parallel Turing Machine model.
Decidable and recognizable languages

- **Theorem 4:** L is Turing decidable if and only if L and \(L^c \) are both Turing-recognizable.

- **Proof:** \(\iff \)
 - \(M_1 \) recognizes L, and \(M_2 \) recognizes \(L^c \).
 - Let M be a 2-tape Turing Machine:
Decidable and recognizable languages

• **Theorem 4:** L is Turing decidable if and only if L and L^c are both Turing-recognizable.

• **Proof:** \Leftarrow

 – M copies input from 1st tape to 2nd tape.
 – Then emulates M_1 and M_2 together, step-by-step.
 – No interaction between them.
 – M’s finite-state control keeps track of states of M_1 and M_2; thus, Q includes $Q_1 \times Q_2$.
 – Also includes new start, accept, and reject states and whatever else is needed for bookkeeping.
Language Classification

• Four possibilities:
 – L and \(L^c \) are both Turing-recognizable.
 • Equivalently, L is Turing-decidable.
 – L is Turing-recognizable, \(L^c \) is not.
 – \(L^c \) is Turing-recognizable, L is not.
 – Neither L nor \(L^c \) is Turing-recognizable.

• All four possibilities occur, as we will see.

• How do we know that there are languages L that are neither Turing-recognizable nor co-Turing-recognizable?

• Cardinality argument:
 – There are uncountably many languages.
 – There are only countably many Turing-recognizable languages and only countably many co-Turing-recognizable languages.
 – Because there are only countably many Turing machines (up to renaming).
Examples

• **Example:** Every regular language L is decidable.

 – Let M be a DFA with $L(M) = L$.
 – Design a Turing machine M' that simulates M.
 – If, after processing the input, the simulated M is in an accepting state, M' accepts; else M' rejects.
Examples

• Example: Let X be the set of binary representations of natural numbers for which the following procedure halts:

  ```plaintext
  while $x \neq 1$ do
    if $x$ is odd then $x := 3x + 1$
    if $x$ is even then $x := x/2$
  halt
  ```

 – Obviously, X is Turing-recognizable: just simulate this procedure and accept if/when it halts.

 – Is it decidable? (?)
Closure Properties

• **Theorem 5:** The set of Turing-recognizable languages is closed under set union and intersection.

 • **Proof:**
 – Run both machines in parallel.
 – For union, accept if either accepts.
 – For intersection, accept if both accept.

• However, the set of Turing-recognizable languages is not closed under complement.

• As we will soon see.

• **Theorem 6:** The set of Turing-decidable languages is closed under union, intersection, and complement.

• **Theorem 7:** Both the Turing-recognizable and Turing-decidable languages are closed under concatenation and star (HW).
Recursively Enumerable Languages
Recursively enumerable languages

• Yet another kind of computability for Turing Machines.
• An **enumerator** is a Turing Machine variant:

 - Starts with a blank work tape (no input).
 - Prints a sequence of finite strings (possibly infinitely many) on output tape.
 - More specifically, e.g.:
 - Enters a special state q_{print}, where contents of work tape, up to first blank, are copied to output tape, followed by blank as a separator.
 - Then machine continues.
 - No accept or reject states.
Recursively enumerable languages

- Starts with a blank work tape (no input).
- Prints a sequence of finite strings (possibly infinitely many) on output tape.
- It may print the same string more than once.
- If E is an enumerator, then define
 \[L(E) = \{ x \mid x \text{ is printed by } E \}. \]
- If $L = L(E)$ for some enumerator E, then we say that L is recursively enumerable (r.e.).
Recursively enumerable languages

- Interesting connection between recursive enumerability and Turing recognizability:

- **Theorem 8:** L is recursively enumerable if and only if L is Turing-recognizable.

- **Proof:** \Rightarrow
 - Given E, an enumerator for L, construct Turing machine M to recognize L.
 - **M:** On input x:
 - M simulates E (on no input, as usual).
 - Whenever E prints, M checks to see if the new output is x.
 - If it ever sees x, M accepts.
 - Otherwise, M keeps going forever.
Recursively enumerable languages

- **Theorem 8**: \(L \) is recursively enumerable if and only if \(L \) is Turing-recognizable.
- **Proof**: \(\iff \)
 - Given \(M \), a Turing machine that recognizes \(L \), construct \(E \) to enumerate \(L \).
 - **Idea**:
 - Simulate \(M \) on all inputs.
 - If/when any simulated execution reaches \(q_{\text{acc}} \), print out the associated input.
 - As before, we can’t run \(M \) on all inputs sequentially, because some computations might not terminate.
 - So we must run them **in parallel**.
 - But this time we must run **infinitely many** computations, so we can’t just use a multitape Turing machine.
Recursively enumerable languages

• **Theorem 8:** L is recursively enumerable if and only if L is Turing-recognizable.

• **Proof:** \(\iff\)
 – Given M, a Turing machine that recognizes L, construct E to enumerate L.
 – Simulate M on all inputs; when any simulated execution reaches \(q_{\text{acc}}\), print out the associated input.
 – New trick: Dovetailing
 • Run 1 step for 1st input string, \(\varepsilon\).
 • Run 2 steps for 1st and 2nd inputs, \(\varepsilon\) and 0.
 • Run 3 steps for 1st, 2nd, and 3rd inputs, \(\varepsilon\), 0 and 1.
 • …
 • Run more and more steps for more and more inputs.
 – Eventually succeeds in reaching \(q_{\text{acc}}\) for each accepting computation of M, so enumerates all elements of L.
Recursively enumerable languages

• **Theorem 8:** L is recursively enumerable if and only if L is Turing-recognizable.

• **Proof:** \Leftarrow
 - Simulate M on all inputs; when any simulated execution reaches q_{acc}, print out the associated input.
 - Dovetail all computations of M.
 - Complicated bookkeeping, messy to work out in detail.
 - But can do algorithmically, hence on a Turing machine.
Turing Machines that solve problems for other domains besides strings
Turing Machines that solve problems for other domains

- [Sipser Section 4.1]
- Our examples of computability by Turing machines have so far involved properties of strings, and numbers represented by strings.
- We can also consider computability by TMs for other domains, such as graphs or DFAs.

Graphs:
- Consider the problem of whether a given graph has a cycle of length > 2.
- Can formalize this problem as a language (set of strings) by encoding graphs as strings over some finite alphabet.
- Graph = (V,E), V = vertices, E = edges, undirected.
Turing Machines that solve graph problems

• Consider the problem of whether a given graph has a cycle of length > 2.
• Formalize as a language (set of strings) by encoding graphs as strings over some finite alphabet.
• Graph = (V,E), V = vertices, E = edges, undirected.
• A standard encoding:
 – Vertices = positive integers (represented in binary)
 – Edges = pairs of positive integers
 – Graph = list of vertices, list of edges.
• Example: ((1, 2, 3), ((1, 2), (2, 3)))
• Write <G> for the encoding of G.
Turing Machines that solve graph problems

- Consider the problem of whether a given graph has a cycle of length > 2.
- Graph = (V,E), V = vertices, E = edges, undirected.
- Write $<G>$ for the encoding of G.
- Using this representation for the input, we can write an algorithm to determine whether or not a given graph G has a cycle, and formalize the algorithm using a Turing machine.
 - E.g., search and look for repeated vertices.
- So cyclicity is a decidable property of graphs.
Turing Machines that solve problems for other domains

- We can also consider computability for domains that are sets of machines:
- DFAs:
 - Encode DFAs using bit strings, by defining standard naming schemes for states and alphabet symbols.
 - Then a DFA tuple is again a list.
 - Example:

 Encode as:
 \[
 ((1, 2), (0, 1), ((1, 1, 1), (1, 0, 2), (2, 0, 2), (2, 1, 2)), (1), (2))
 \]

 - Encode the list using bit strings.
 - Write \(<M>\) for the encoding of M.
 - So we can define languages whose elements are (bit strings representing) DFAs.
Turing Machines that solve DFA problems

• Example: \(L_1 = \{ < M > \mid L(M) = \emptyset \} \) is Turing-decidable
• Elements of \(L_1 \) are bit-string representations of DFAs that accept nothing (emptiness problem).
• Already described an algorithm to decide this, based on searching to determine whether any accepting state is reachable from the start state.
• Could formalize this (painfully) as a Turing machine.
• Proves that \(L_1 \) is Turing-decidable.

• Similarly, all the other decision problems we considered for DFAs, NFAs, and regular expressions are Turing-decidable (not just Turing-recognizable).
• Just represent the inputs using standard encodings and formalize the algorithms that we’ve already discussed, using Turing machines.
Turing Machines that solve DFA problems

- **Example:** Equivalence for DFAs
 \[L_2 = \{ < M_1, M_2 > | L(M_1) = L(M_2) \} \text{ is Turing-decidable.} \]
- Elements of \(L_2 \) are bit-string representations of pairs of DFAs that recognize the same language.
- Note that the domain we encode is **pairs of DFAs**.
- Already described an algorithm to decide this, based on testing inclusion both ways; to test whether \(L(M_1) \subseteq L(M_2) \), just test whether \(L(M_1) \cap (L(M_2))^c = \emptyset \).
- Formalize as a Turing machine.
- Proves that \(L_2 \) is Turing-decidable.
Turing Machines that solve DFA problems

• **Example:** Acceptance for DFAs
 \[L_3 = \{ < M, w > \mid w \in L(M) \} \text{ is Turing-decidable.} \]

• Domain is (DFA, input) pairs.

• Algorithm simply runs M on w.

• Formalize as a Turing machine.

• Proves that \(L_3 \) is Turing-decidable.
Moving on…

• Now, things get more complicated: we consider inputs that are encodings of Turing machines rather than DFAs.

• In other words, we will discuss Turing machines that decide questions about Turing machines!
Undecidability of the Turing Machine Acceptance Problem
Undecidability of TM Acceptance Problem

- Now (and for a while), we will focus on showing that certain languages are not Turing-decidable, and that some are not even Turing-recognizable.
- It’s easy to see that such languages exist, based on cardinality considerations.
- Now we will show some specific languages are not Turing decidable, and not Turing-recognizable.
- These languages will express questions about Turing machines.
Undecidability of TM Acceptance

• We have been discussing decidability of problems involving DFAs, e.g.:
 \{< M > \mid M \text{ is a DFA and } L(M) = \emptyset \}, \text{ decidable by Turing machine that searches } M\text{'s digraph.}
 \{< M, w > \mid M \text{ is a DFA, } w \text{ is a word in } M\text{'s alphabet, and } w \in L(M) \}, \text{ decidable by a Turing machine that emulates } M \text{ on } w.

• Turing machines compute only on strings, but we can regard them as computing on DFAs by **encoding the DFAs as strings** (using a standard encoding).

• Now we consider **encoding Turing machines as strings**, and allowing other Turing machines to compute on these strings.

• Encoding of Turing machines: Standard state names, lists, etc., similar to DFA encoding.
 • \(<M>\) = encoding of Turing machine M.
 • \(<M, w>\) = encoding Turing machine + input string
 • Etc.
Problems we will consider

- $\text{Acc}_{\text{TM}} = \{ < M, w > | M \text{ is a (basic) Turing machine, } w \text{ is a word in } M\text{'s alphabet, and } M \text{ accepts } w \}$.
- $\text{Halt}_{\text{TM}} = \{ < M, w > | M \text{ is a Turing machine, } w \text{ is a word in } M\text{'s alphabet, and } M \text{ halts (either accepts or rejects) on } w \}$.
- $\text{Empty}_{\text{TM}} = \{ < M > | M \text{ is a Turing machine and } L(M) = \emptyset \}$
 - Recall: $L(M)$ refers to the set of strings M accepts.
- Etc.

Thus, we can formulate questions about Turing machines as languages.

Then we can ask if they are Turing-decidable; that is, can some particular TM answer these questions about all (basic) TMs?

We’ll prove that they cannot.
The Acceptance Problem

- \(\text{Acc}_{\text{TM}} = \{ < M, w > | M \text{ is a (basic) Turing machine and } M \text{ accepts } w \} \).

- **Theorem 1**: \(\text{Acc}_{\text{TM}} \) is Turing-recognizable.

Proof:
- Construct a TM \(U \) that recognizes \(\text{Acc}_{\text{TM}} \).
- \(U \): On input \(< M, w > \):
 - Simulate \(M \) on input \(w \).
 - If \(M \) accepts, accept.
 - If \(M \) rejects, reject.
 - Otherwise, \(U \) loops forever.
- Then \(U \) accepts exactly \(< M, w > \) encodings for which \(M \) accepts \(w \).

- \(U \) is sometimes called a **universal Turing machine** because it runs all TMs.
 - Like an interpreter for a programming language.
The Acceptance Problem

- \(\text{Acc}_{\text{TM}} = \{ < M, w > | \text{M is a TM and M accepts } w \} \).
- \(U \): On input \(< M, w >\):
 - Simulate \(M \) on input \(w \).
 - If \(M \) accepts, accept.
 - If \(M \) rejects, reject.
 - Otherwise, \(U \) loops forever.
- \(U \) recognizes \(\text{Acc}_{\text{TM}} \).
- \(U \) is a universal Turing machine because it runs all TMs.
- \(U \) uses a fixed, finite set of states, and set of alphabet symbols, but still simulates TMs with arbitrarily many states and symbols.
 - All encoded using the fixed symbols, decoded during emulation.
The Acceptance Problem

- \(\text{Acc}_{\text{TM}} = \{ < M, w > | M \text{ is a TM and } M \text{ accepts } w \} \).
- **U**: On input \(< M, w > \):
 - Simulate \(M \) on input \(w \).
 - If \(M \) accepts, accept.
 - If \(M \) rejects, reject.
 - Otherwise, \(U \) loops forever.

- **U** recognizes \(\text{Acc}_{\text{TM}} \).
- **Does U decide** \(\text{Acc}_{\text{TM}} \) ?
 - **No.**
 - If \(M \) loops forever on \(w \), \(U \) loops forever on \(<M,w> \), never accepts or rejects.
 - To decide, \(U \) would have to detect when \(M \) is looping and reject.
 - Seems difficult…
Undecidability of Acceptance

• **Theorem 2:** \(\text{Acc}_{\text{TM}} \) is not Turing-decidable.

• **Proof:**
 – Assume that \(\text{Acc}_{\text{TM}} \) is Turing-decidable and produce a contradiction.
 – Similar to the diagonalization argument that shows that we can’t enumerate all languages.
 – Since (we assume) \(\text{Acc}_{\text{TM}} \) is Turing-decidable, there must be a particular TM \(H \) that decides \(\text{Acc}_{\text{TM}} \):
 • \(H(<M,w>) \):
 – accepts if \(M \) accepts \(w \),
 – rejects if \(M \) rejects \(w \),
 – rejects if \(M \) loops on \(w \).
Undecidability of Acceptance

• **Theorem 2:** Acc_T^M is not Turing-decidable.

• **Proof, cont’d:**
 – $H(<M,w>)$ accepts if M accepts w, rejects if M rejects w or if M loops on w.
 – Use H to construct another TM H' that decides a special case of the same language.
 – Instead of considering whether M halts on an arbitrary w, just consider M on its own representation:
 – $H'(\langle M \rangle)$:
 • accepts if M accepts $\langle M \rangle$,
 • rejects if M rejects $\langle M \rangle$ or if M loops on $\langle M \rangle$.
 – If H exists, then so does H': H' simply runs H on certain arguments.
Undecidability of Acceptance

- **Theorem 2**: Acc_{TM} is not Turing-decidable.
- **Proof, cont’d:**
 - $H'(\langle M \rangle)$:
 - accepts if M accepts $\langle M \rangle$,
 - rejects if M rejects $\langle M \rangle$ or if M loops on $\langle M \rangle$.
 - Now define D (the diagonal machine) to do the opposite of H':
 - $D(\langle M \rangle)$:
 - rejects if M accepts $\langle M \rangle$,
 - accepts if M rejects $\langle M \rangle$ or if M loops on $\langle M \rangle$.
 - If H' exists, then so does D: D runs H' and outputs the opposite.
Undecidability of Acceptance

• **Theorem 2:** \(\text{Acc}_{TM} \) is not Turing-decidable.
• **Proof, cont’d:**
 – \(D(<M>) \):
 • rejects if \(M \) accepts \(<M>\),
 • accepts if \(M \) rejects \(<M>\) or if \(M \) loops on \(<M>\).
 – Now, what happens if we run \(D \) on \(<D>\)?
 – Plug in \(D \) for \(M \):
 – \(D(<D>) \):
 • rejects if \(D \) accepts \(<D>\),
 • accepts if \(D \) rejects \(<D>\) or if \(D \) loops on \(<D>\).
 – Then \(D \) accepts \(<D>\) if and only if \(D \) does not accept \(<D>\), contradiction!
 – So \(\text{Acc}_{TM} \) is not Turing-decidable.
Diagonalization Proofs

- This undecidability proof for Acc$_{TM}$ is an example of a diagonalization proof.
- Earlier, we used diagonalization to show that the set of all languages is not countable.
- Consider a big matrix, with TMs labeling rows and strings that represent TMs labeling columns.
- The major diagonal describes results for M(<M>), for all M.
- D is a diagonal machine, constructed explicitly to differ from the diagonal entries: D(<M>)’s result differs from M(<M>)’s.
- Implies that D itself can’t appear as a label for a row in the matrix, a contradiction since the matrix is supposed to include all TMs.
Summary: Acc_{TM}

- We have shown that $\text{Acc}_{\text{TM}} = \{ < M, w > \mid M \text{ is a Turing machine and } M \text{ accepts } w \}$ is Turing-recognizable but not Turing-decidable.

- **Corollary:** $(\text{Acc}_{\text{TM}})^c$ is not Turing-recognizable.

- **Proof:**
 - By Theorem 4.
 - If Acc_{TM} and $(\text{Acc}_{\text{TM}})^c$ were both Turing-recognizable, then Acc_{TM} would be Turing-decidable.
Undecidability of the Turing Machine Halting Problem
The Halting Problem

- $\text{Halt}_{TM} = \{ < M, w > \mid M \text{ is a Turing machine and } M \text{ halts on (either accepts or rejects) } w \}$.
- Compare with $\text{Acc}_{TM} = \{ < M, w > \mid M \text{ is a Turing machine and } M \text{ accepts } w \}$.
- Terminology caution: Sipser calls Acc_{TM} the “halting problem”, and calls Halt_{TM} just Halt_{TM}.
- Theorem: Halt_{TM} is not Turing-decidable.
- Proof:
 - Let’s not use diagonalization.
 - Rather, take advantage of diagonalization work already done for Acc_{TM}, using new method: reduction.
 - Prove that, if we could decide Halt_{TM}, then we could decide Acc_{TM}.
 - Reduction is a very powerful, useful technique for showing undecidability; we’ll use it several times.
 - Also useful (later) to show inherent complexity results.
The Halting Problem

- \(\text{Halt}_\text{TM} = \{ \langle M, w \rangle \mid M \text{ halts on (accepts or rejects) } w \} \).
- **Theorem:** \(\text{Halt}_\text{TM} \) is not Turing-decidable.
- **Proof:**
 - Suppose for contradiction that \(\text{Halt}_\text{TM} \) is Turing-decidable, say by Turing machine \(\text{R} \):
 - \(\text{R}(\langle M, w \rangle) \):
 - accepts if \(M \) halts on (accepts or rejects) \(w \),
 - rejects if \(M \) loops (neither accepts nor rejects) on \(w \).
 - Using \(\text{R} \), define new TM \(\text{S} \) to decide \(\text{Acc}_\text{TM} \):
 - \(\text{S} \): On input \(\langle M, w \rangle \):
 - Run \(\text{R} \) on \(\langle M, w \rangle \); \(\text{R} \) must either accept or reject; can’t loop, by definition of \(\text{R} \).
 - If \(\text{R} \) accepts then \(M \) must halt (accept or reject) on \(w \). Then simulate \(M \) on \(w \), knowing this must terminate. If \(M \) accepts, accept. If \(M \) rejects, reject.
 - If \(\text{R} \) rejects, then reject.
The Halting Problem

- **Theorem:** \(\text{Halt}^\text{TM} \) is not Turing-decidable.
- **Proof:**
 - Suppose \(\text{Halt}^\text{TM} \) is Turing-decidable by TM R.
 - S: On input \(<M,w>\>:
 - Run R on \(<M,w>\>\; R \text{ must either accept or reject; can’t loop, by definition of } R.
 - If R accepts then \(M \) must halt (accept or reject) on \(w \). Then simulate \(M \) on \(w \), knowing this must terminate. If \(M \) accepts, accept. If rejects, reject.
 - If R rejects, then reject.
 - Claim S decides \(\text{Acc}^\text{TM} \): 3 cases:
 - If \(M \) accepts \(w \), then R accepts \(<M,w>\>, and the simulation leads S to accept.
 - If \(M \) rejects \(w \), then R accepts \(<M,w>\>, and the simulation leads S to reject.
 - If \(M \) loops on \(w \), then R rejects \(<M,w>\>, and S rejects.
 - That’s what’s supposed to happen in three cases, for \(\text{Acc}^\text{TM} \).
The Three Cases

R distinguishes these two cases

M accepts w M rejects w M loops on w

Now S knows that M will terminate, simulates M on w.

S knows that M loops, rejects.

S distinguishes these two cases.
The Halting Problem

- **Theorem:** Halt_{TM} is not Turing-decidable.
- **Proof:**
 - Suppose Halt_{TM} is Turing-decidable by TM R.
 - S: On input $<M,w>$:
 - Run R on $<M,w>$; R must either accept or reject; can’t loop, by definition of R.
 - If R accepts then M must halt (accept or reject) on w. Then simulate M on w, knowing this must terminate. If M accepts, accept. If rejects, reject.
 - If R rejects, then reject.
 - S decides Acc_{TM}.
 - So Acc_{TM} is decidable, contradiction.
 - Therefore, Halt_{TM} is not Turing-decidable.
The Halting Problem

• **Theorem:** Halt_{TM} is not Turing-decidable.
• Also:
 • **Theorem:** Halt_{TM} is Turing-recognizable.
• So:
 • **Corollary:** $(\text{Halt}_{TM})^c$ is not Turing-recognizable.
Next time…

• More undecidable problems:
 – About Turing machines:
 • Emptiness, etc.
 – About other things:
 • Post Correspondence Problem (a string matching problem).

• **Reading:** Sipser Sections 4.2, 5.1.