6.045: Automata, Computability, and Complexity
Or, Great Ideas in Theoretical Computer Science
Spring, 2010

Class 9
Nancy Lynch
Today

• Mapping reducibility and Rice’s Theorem
• We’ve seen several undecidability proofs.
• Today we’ll extract some of the key ideas of those proofs and present them as general, abstract definitions and theorems.
• Two main ideas:
 – A formal definition of reducibility from one language to another. Captures many of the reduction arguments we have seen.
 – Rice’s Theorem, a general theorem about undecidability of properties of Turing machine behavior (or program behavior).
Today

• Mapping reducibility and Rice’s Theorem

• Topics:
 – Computable functions.
 – Mapping reducibility, \leq_m
 – Applications of \leq_m to show undecidability and non-recognizability of languages.
 – Rice’s Theorem
 – Applications of Rice’s Theorem

• Reading:
 – Sipser Section 5.3, Problems 5.28-5.30.
Computable Functions
Computable Functions

- These are needed to define mapping reducibility, \leq_m.
- **Definition:** A function $f: \Sigma_1^* \rightarrow \Sigma_2^*$ is **computable** if there is a Turing machine (or program) such that, for every w in Σ_1^*, M on input w halts with just $f(w)$ on its tape.
- To be definite, use basic TM model, except replace q_{acc} and q_{rej} states with one q_{halt} state.

- So far in this course, we’ve focused on accept/reject decisions, which let TMs **decide language membership**.
- That’s the same as computing functions from Σ^* to $\{\text{accept, reject}\}$.
- Now generalize to compute functions that produce strings.
Total vs. partial computability

- We require f to be **total** = defined for every string.
- Could also define **partial computable** (= **partial recursive**) functions, which are defined on some subset of Σ_1^*.
- Then M should not halt if $f(w)$ is undefined.
Computable functions

• **Example 1: Computing prime numbers.**

 – $f: \{0, 1\}^* \rightarrow \{0, 1\}^*$

 – On input w that is a binary representation of positive integer i, result is the standard binary representation of the i^{th} prime number.

 – On inputs representing 0, result is the empty string ε.

 • Probably don’t care what the result is in this case, but totality requires that we define something.

 – For instance:

 • $f(\varepsilon) = f(0) = f(00) = \varepsilon$

 • $f(1) = f(01) = f(001) = 10$ (binary rep of 2, first prime)

 • $f(10) = f(010) = 11$ (3, second prime)

 • $f(11) = 101$ (5, third prime)

 • $f(100) = 111$ (7, fourth prime)

 – Computable, e.g., by sieve algorithm.
Computable functions

• Example 2: Reverse machine.
 – f: \{ 0, 1 \}^* \rightarrow \{ 0, 1 \}^*
 – On input w = < M >, where M is a (basic) Turing machine, f(w) = < M' >, where M' is a Turing machine that accepts exactly the reverses of the words accepted by M.
 – L(M') = \{ w^R | w \in L(M) \}
 – On inputs w that don’t represent TMs, f(w) = \varepsilon.
 – Computable:
 • M' reverses its input and then simulates M.
 • Can compute description of M' from description of M.
Computable functions

• Example 3: Transformations of DFAs, etc.
 – We studied several algorithmic transformations of DFAs and NFAs:
 • NFA \rightarrow equivalent DFA
 • DFA for $L \rightarrow$ DFA for L^c
 • DFA for $L \rightarrow$ DFA for $\{ w^R \mid w \in L \}$
 • Etc.
 – All of these transformations can be formalized as computable functions (from machine representations to machine representations)
Mapping Reducibility
Mapping Reducibility

- **Definition**: Let $A \subseteq \Sigma_1^*$, $B \subseteq \Sigma_2^*$ be languages. Then A is mapping-reducible to B, $A \leq_m B$, provided that there is a computable function $f: \Sigma_1^* \rightarrow \Sigma_2^*$ such that, for every string w in Σ_1^*, $w \in A$ if and only if $f(w) \in B$.

- Two things to show for “if and only if”:

- We’ve already seen many instance of \leq_m in the reductions we’ve used to prove undecidability and non-recognizability, e.g.:
Mapping reducibility examples

• Example: $\text{Acc}_{\text{TM}} \leq_m \text{Acc01}_{\text{TM}}$

 Accepts the string 01, possibly others

• $<M, w> \rightarrow <M'_{M, w}>$, by computable function f.

• $M'_{M, w}$ behaves as follows: If M accepts w then it accepts everything; otherwise it accepts nothing.

• This f demonstrates mapping reducibility because:
 – If $<M, w> \in \text{Acc}_{\text{TM}}$ then $<M'_{M, w}> \in \text{Acc01}_{\text{TM}}$.
 – If $<M, w> \notin \text{Acc}_{\text{TM}}$ then $<M'_{M, w}> \notin \text{Acc01}_{\text{TM}}$.
 – Thus, we have “if and only if”, as needed.
 – And f is computable.

• Technicality: Must also map inputs not of the form $<M, w>$ somewhere.
Mapping reducibility examples

• Example: \(\text{Acc}_{TM} \leq_m (E_{TM})^c \)

Nonemptiness, \{ M | M accepts some string\}

• \(\langle M, w \rangle \rightarrow \langle M'_{M,w} \rangle \), by computable function \(f \).
• Use same \(f \) as before: If \(M \) accepts \(w \) then \(M'_{M,w} \) accepts everything; otherwise it accepts nothing.
• But now we must show something different:
 – If \(\langle M, w \rangle \in \text{Acc}_{TM} \) then \(\langle M'_{M,w} \rangle \in (E_{TM})^c \).
 • Accepts something, in fact, accepts everything.
 – If \(\langle M, w \rangle \notin \text{Acc}_{TM} \) then \(\langle M'_{M,w} \rangle \in E_{TM} \).
 • Accepts nothing.
 – \(f \) is computable.
• Note: We didn’t show \(\text{Acc}_{TM} \leq_m E_{TM} \).
 – Reversed the sense of the answer (took the complement).
Mapping reducibility examples

- Example: $\text{Acc}_{\text{TM}} \leq_m \text{REG}_{\text{TM}}$.

- $<M, w> \rightarrow <M'_{M,w}>$, by computable function f.

- We defined f so that: If M accepts w then $M'_{M,w}$ accepts everything; otherwise it accepts exactly the strings of the form 0^n1^n, $n \geq 0$.

- So $<M, w> \in \text{Acc}_{\text{TM}}$ iff $M'_{M,w}$ accepts a regular language iff $<M'_{M,w}> \in \text{REG}_{\text{TM}}$.
Mapping reducibility examples

- Example: $\text{Acc}_{TM} \leq_m \text{MPCP}$.

- $<M, w> \rightarrow <T_{M,w}, t_{M,w}>$, by computable function f, where $<T_{M,w}, t_{M,w}>$ is an instance of MPCP (set of tiles + distinguished tile).
- We defined f so that $<M, w> \in \text{Acc}_{TM}$
 - iff $T_{M,w}$ has a match starting with $t_{M,w}$
 - iff $<T_{M,w}, t_{M,w}> \in \text{MPCP}$

- Example: $\text{Acc}_{TM} \leq_m \text{PCP}$.
- $<M, w> \rightarrow <T_{M,w}>$ where $<M, w> \in \text{Acc}_{TM}$ iff $T_{M,w}$ has a match iff $<T_{M,w}> \in \text{PCP}$.
Basic Theorems about \leq_m

• **Theorem 1:** If $A \leq_m B$ and B is Turing-decidable then A is Turing-decidable.

 • **Proof:**
 – To decide if $w \in A$:
 • Compute $f(w)$
 – Can be done by a TM, since f is computable.
 • Decide whether $f(w) \in B$.
 – Can be done by a TM, since B is decidable.
 • Output the answer.

• **Corollary 2:** If $A \leq_m B$ and A is undecidable then B is undecidable.

• So undecidability of Acc_{TM} implies undecidability of E_{TM}, REG_{TM}, MPCP, etc.
Basic Theorems about \leq_m

- **Theorem 3:** If $A \leq_m B$ and B is Turing-recognizable then A is Turing-recognizable.

 Proof: On input w:
 - Compute $f(w)$.
 - Run a TM that recognizes B on input $f(w)$.
 - If this TM ever accepts, accept.
- **Corollary 4:** If $A \leq_m B$ and A is not Turing-recognizable then B is not Turing-recognizable.
- **Theorem 5:** $A \leq_m B$ if and only if $A^c \leq_m B^c$.

 Proof: Use same f.
- **Theorem 6:** If $A \leq_m B$ and $B \leq_m C$ then $A \leq_m C$.

 Proof: Compose the two functions.
Basic Theorems about \leq_m

- **Theorem 6**: If $A \leq_m B$ and $B \leq_m C$ then $A \leq_m C$.

- **Example**: PCP
 - Showed $\text{Acc}_{TM} \leq_m \text{MPCP}$.
 - Showed $\text{MPCP} \leq_m \text{PCP}$.
 - Conclude from Theorem 6 that $\text{Acc}_{TM} \leq_m \text{PCP}$.
More Applications of Mapping Reducibility
Applications of \leq_m

• We have already used \leq_m to show undecidability; now use it to show non-Turing-recognizability.

• Example: Acc01_{TM}
 – We already know that Acc01_{TM} is Turing-recognizable.
 – Now show that $(\text{Acc01}_{\text{TM}})^c$ is not Turing-recognizable.
 – We showed that $\text{Acc}_{\text{TM}} \leq_m \text{Acc01}_{\text{TM}}$.
 – So $(\text{Acc}_{\text{TM}})^c \leq_m (\text{Acc01}_{\text{TM}})^c$, by Theorem 5.
 – We also already know that $(\text{Acc}_{\text{TM}})^c$ is not Turing recognizable.
 – So $(\text{Acc01}_{\text{TM}})^c$ is not Turing-recognizable, by Corollary 4.
Applications of \leq_m

• Now an example of a language that is not Turing-recognizable and whose complement is also not Turing-recognizable.

• That is, it’s neither Turing-recognizable nor co-Turing-recognizable.

• Example: $\text{EQ}_{\text{TM}} = \{ < M_1, M_2 > | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$
 – Important in practice, e.g.:
 • Compare two versions of the “same” program.
 • Compare the result of a compiler optimization to the original un-optimized compiler output.

• Theorem 7: EQ_{TM} is not Turing-recognizable.

• Theorem 8: $(\text{EQ}_{\text{TM}})^c$ is not Turing-recognizable.
Applications of \leq_m

- $\text{EQ}_{\text{TM}} = \{ < M_1, M_2 > | L(M_1) = L(M_2) \}$
- **Theorem 7:** EQ_{TM} is not Turing-recognizable.
- **Proof:**
 - Show $(\text{Acc}_{\text{TM}})^c \leq_m \text{EQ}_{\text{TM}}$ and use Corollary 4.
 - Already showed $(\text{Acc}_{\text{TM}})^c$ is not Turing-recognizable.
 - Equivalently, show $\text{Acc}_{\text{TM}} \leq_m (\text{EQ}_{\text{TM}})^c$.
 - Equivalent by Theorem 5.
 - Need:
 - Accepting iff not equivalent.
EQ_TM is not Turing-recognizable.

- $\text{Acc}_\text{TM} \leq_m (\text{EQ}_\text{TM})^c$:

 - Define $f(x)$ so that $x \in \text{Acc}_\text{TM}$ iff $f(x) \in (\text{EQ}_\text{TM})^c$.
 - If x is not of the form $<M, w>$ define $f(x) = <M_0, M_0>$, where M_0 is any particular TM.
 - Then $x \not\in \text{Acc}_\text{TM}$ and $f(x) \in \text{EQ}_\text{TM}$, which fits our requirements.
 - So now assume that $x = <M, w>$.
 - Then define $f(x) = <M_1, M_2>$, where:
 - M_1 always rejects, and
 - M_2 ignores its input, runs M on w, and accepts iff M accepts w.
 - Claim: $x \in \text{Acc}_\text{TM}$ iff $f(x) \in (\text{EQ}_\text{TM})^c$.

Diagram:

- Acc_TM
- $(\text{EQ}_\text{TM})^c$
- f
EQ_{TM} is not Turing-recognizable.

- Acc_{TM} \leq_m (EQ_{TM})^c:

- Assume x = <M, w>, define f(x) = <M_1, M_2>, where:
 - M_1 always rejects, and
 - M_2 ignores its input, runs M on w, and accepts iff M accepts w.

- Claim: x \in Acc_{TM} iff f(x) \in (EQ_{TM})^c.

- Proof:
 - If x \in Acc_{TM}, then M accepts w, so M_2 accepts everything, so
 <M_1, M_2> \notin EQ_{TM}, so <M_1, M_2> \in (EQ_{TM})^c.
 - If x \notin Acc_{TM}, then M does not accept w, so M_2 accepts nothing, so
 <M_1, M_2> \in EQ_{TM}, so <M_1, M_2> \notin (EQ_{TM})^c.
EQ\textsubscript{TM} is not Turing-recognizable.

- Assume $x = \langle M, w \rangle$, define $f(x) = \langle M_1, M_2 \rangle$, where:
 - M_1 always rejects, and
 - M_2 ignores its input, runs M on w, and accepts iff M accepts w.
- **Claim:** $x \in \text{Acc\textsubscript{TM}}$ iff $f(x) \in (\text{EQ\textsubscript{TM}})^c$.
- Therefore, $\text{Acc\textsubscript{TM}} \leq_m (\text{EQ\textsubscript{TM}})^c$ using f.
- So $(\text{Acc\textsubscript{TM}})^c \leq_m \text{EQ\textsubscript{TM}}$ by Theorem 5.
- So $\text{EQ\textsubscript{TM}}$ is not Turing-recognizable, by Corollary 4.
Applications of \leq_m

- We have proved:
- **Theorem 7:** EQ_{TM} is not Turing-recognizable.
- It turns out that the complement isn’t T-recognizable either!
- **Theorem 8:** $(EQ_{TM})^c$ is not Turing-recognizable.
- **Proof:** Show $(Acc_{TM})^c \leq_m (EQ_{TM})^c$ and use Corollary 4.
 - We know $(Acc_{TM})^c$ is not Turing-recognizable.
 - Equivalently, show $Acc_{TM} \leq_m EQ_{TM}$.
 - Need:
 - Accepting iff equivalent.
\((\text{EQ}_{\text{TM}})^c\) is not Turing-recognizable.

- \(\text{Acc}_{\text{TM}} \leq_m \text{EQ}_{\text{TM}}\):

\[
\begin{array}{c}
\text{Acc}_{\text{TM}} \\
\uparrow \\
\text{g} \\
\downarrow \\
\text{EQ}_{\text{TM}}
\end{array}
\]

- Define \(g(x)\) so that \(x \in \text{Acc}_{\text{TM}}\) iff \(f(x) \in \text{EQ}_{\text{TM}}\).
- If \(x\) is not of the form \(<M, w>\) define \(f(x) = <M_0, M_0'>\), where \(L(M_0) \neq L(M_0')\).
- Then \(x \notin \text{Acc}_{\text{TM}}\) and \(g(x) \notin \text{EQ}_{\text{TM}}\), as required.
- So now assume \(x = <M, w>\).
- Define \(g(x) = <M_1, M_2>\), where:
 - \(M_1\) accepts everything, and
 - \(M_2\) ignores its input, runs \(M\) on \(w\), accepts iff \(M\) does (as before).
- Claim: \(x \in \text{Acc}_{\text{TM}}\) iff \(g(x) \in \text{EQ}_{\text{TM}}\).
(EQ\textsubscript{TM})c is not Turing-recognizable.

• Acc\textsubscript{TM} \leq_m EQ\textsubscript{TM}:

• Assume x = <M, w>, define g(x) = <M\textsubscript{1}, M\textsubscript{2}>, where:
 – M\textsubscript{1} accepts everything, and
 – M\textsubscript{2} ignores its input, runs M on w, and accepts iff M does.

• Claim: x \in Acc\textsubscript{TM} iff g(x) \in EQ\textsubscript{TM}.

• Proof:
 – If x \in Acc\textsubscript{TM}, then M\textsubscript{1} and M\textsubscript{2} both accept everything, so <M\textsubscript{1}, M\textsubscript{2}> \in EQ\textsubscript{TM}.
 – If x \notin Acc\textsubscript{TM}, then M\textsubscript{1} accepts everything and M\textsubscript{2} accepts nothing, so <M\textsubscript{1}, M\textsubscript{2}> \notin EQ\textsubscript{TM}.
\((EQ_{TM})^c\) is not Turing-recognizable.

- Assume \(x = <M, w>\), define \(g(x) = <M_1, M_2>\), where:
 - \(M_1\) accepts everything, and
 - \(M_2\) ignores its input, runs \(M\) on \(w\), and accepts iff \(M\) does.
- **Claim:** \(x \in Acc_{TM} \iff g(x) \in EQ_{TM}\).
- Therefore, \(Acc_{TM} \leq_m EQ_{TM}\) using \(g\).
- So \((Acc_{TM})^c \leq_m (EQ_{TM})^c\) by Theorem 5.
- So \((EQ_{TM})^c\) is not Turing-recognizable, by Corollary 4.
Rice’s Theorem
Rice’s Theorem

• We’ve seen many undecidability results for properties of TMs, e.g., for:
 – \(\text{Acc}_{01,\text{TM}} = \{ \langle M \rangle \mid 01 \in L(M) \} \)
 – \(\text{E}_{\text{TM}} = \{ \langle M \rangle \mid L(M) = \emptyset \} \)
 – \(\text{REG}_{\text{TM}} = \{ \langle M \rangle \mid L(M) \text{ is a regular language} \} \)
• These are all properties of the language recognized by the machine.
• Contrast with:
 – \{ \langle M \rangle \mid M \text{ never tries to move left off the left end of the tape} \}
 – \{ \langle M \rangle \mid M \text{ has more than 20 states} \}
• Rice’s Theorem says (essentially) that any property of the language recognized by a TM is undecidable.
• Very powerful theorem.
• Covers many problems besides the ones above, e.g.:
 – \{ \langle M \rangle \mid L(M) \text{ is a finite set} \}
 – \{ \langle M \rangle \mid L(M) \text{ contains some palindrome} \}
 – ...
Rice’s Theorem

- Rice’s Theorem says (essentially) that any property of the language recognized by a TM is undecidable.
- Technicality: Restrict to nontrivial properties.
- Define a set P of languages, to be a nontrivial property of Turing-recognizable languages provided that
 - There is some TM M_1 such that $L(M_1) \in P$, and
 - There is some TM M_2 such that $L(M_2) \notin P$.
- Equivalently:
 - There is some Turing-recognizable language L_1 in P, and
 - There is some Turing recognizable language L_2 not in P.

- Rice’s Theorem: Let P be a nontrivial property of Turing-recognizable languages. Let $M_P = \{ < M > | L(M) \in P \}$. Then M_P is undecidable.
Rice’s Theorem

• P is a nontrivial property of T-recog. languages if:
 – There is some TM M_1 such that $L(M_1) \in P$, and
 – There is some TM M_2 such that $L(M_2) \notin P$.

• Rice’s Theorem: Let P be a nontrivial property of Turing-recognizable languages. Let $M_P = \{ < M > | L(M) \in P \}$. Then M_P is undecidable.

• Proof:
 – Show $\text{Acc}_{TM} \leq_m M_P$.
 – Suppose WLOG that the empty language does not satisfy P, that is, $\emptyset \notin P$.
 – Why is this WLOG?
 • Otherwise, work with P^c instead of P.
 • Then $\emptyset \notin P^c$, continue the proof using P^c.
 • Conclude that M_{P^c} is undecidable.
 • Implies that M_P is undecidable.
Rice’s Theorem

- **Rice’s Theorem**: Let P be a nontrivial property of Turing-recognizable languages. Let $M_P = \{ <M> \mid L(M) \in P \}$. Then M_P is undecidable.

- **Proof**:
 - Show $\text{Acc}_{TM} \leq_m M_P$.
 - Suppose $\emptyset \not\in P$.
 - Need:
 - Let M_1 be any TM such that $L(M_1) \in P$, so $<M_1> \in M_P$.
 - How do we know such M_1 exists?
 - Because P is nontrivial.
Rice’s Theorem

• **Rice’s Theorem:** Let P be a nontrivial property of Turing-recognizable languages. Let $M_P = \{ < M > | L(M) \in P \}$. Then M_P is undecidable.

• **Proof:**
 – Show $\text{Acc}_{TM} \leq_m M_P$.
 – Suppose $\emptyset \notin P$.
 – Need:
 – Let M_1 be any TM such that $L(M_1) \in P$, so $< M_1 > \in M_P$.
 – Let M_2 be any TM such that $L(M_2) = \emptyset$, so $< M_2 > \notin M_P$.

![Diagram showing the relationship between Acc_{TM} and M_P.](image)
Rice’s Theorem

- **Rice’s Theorem:** Let P be a nontrivial property. Then $M_P = \{ < M > \mid L(M) \in P \}$ is undecidable.

- **Proof:**
 - Need:
 - Let M_1 be any TM such that $L(M_1) \in P$, so $< M_1 > \in M_P$.
 - Let M_2 be any TM such that $L(M_2) = \emptyset$, so $< M_2 > \notin M_P$.

 - Define $f(x)$:
 - If x isn’t of the form $<M, w>$, return something $\notin M_P$, like $< M_2 >$.
 - If $x = <M, w>$, then $f(x) = < M'_M,w >$, where:
 - M'_M,w: On input y:
 - ...
Rice’s Theorem

Proof:
- Show $\text{Acc}_{\text{TM}} \leq_{m} M_{P}$.
- $L(M_{1}) \in P$, so $<M_{1}> \in M_{P}$.
- $L(M_{2}) = \emptyset$, so $<M_{2}> \notin M_{P}$.
- Define $f(x)$:
 - If $x = <M, w>$, then $f(x) = <M'_{M,w}>$, where:
 - $M'_{M,w}$: On input y:
 - Run M on w.
 - If M accepts w then run M_{1} on y, accept if M_{1} accepts y.
 - (If M doesn’t accept w or M_{1} doesn’t accept y, loop forever.)
 - Tricky…
Rice’s Theorem

• Proof:
 – Show $\text{Acc}_{\text{TM}} \leq_m \text{M}_P$.
 – $L(M_1) \in \text{P}$, so $< M_1 > \in \text{M}_P$.
 – $L(M_2) = \emptyset$, so $< M_2 > \notin \text{M}_P$.
 – If $x = <M, w>$, then $f(x) = < M'_M, w >$, where:
 • M'_M, w: On input y:
 – Run M on w.
 – If M accepts w then run M_1 on y and accept if M_1 accepts y.
 – Claim $x \in \text{Acc}_{\text{TM}}$ if and only if $f(x) \in \text{M}_P$.
 • If $x = <M, w> \in \text{Acc}_{\text{TM}}$ then $L(M'_M, w) = L(M_1) \in \text{P}$, so $f(x) \in \text{M}_P$.
 • If $x = <M, w> \notin \text{Acc}_{\text{TM}}$ then $L(M'_M, w) = \emptyset \notin \text{P}$, so $f(x) \notin \text{M}_P$.
 – Therefore, $\text{Acc}_{\text{TM}} \leq_m \text{M}_P$ using f.
 – So M_P is undecidable, by Corollary 2.
Rice’s Theorem

• We have proved:

• Rice’s Theorem: Let \(P \) be a nontrivial property of Turing-recognizable languages. Let \(M_P = \{ <M> | L(M) \in P \} \). Then \(M_P \) is undecidable.

• Note:
 – Rice proves undecidability, doesn’t prove non-Turing-recognizability.
 – The sets \(M_P \) may be Turing-recognizable.

• Example: \(P = \) languages that contain 01
 – Then \(M_P = \{ <M> | 01 \in L(M) \} = \text{Acc}_01^{TM} \).
 – Rice implies that \(M_P \) is undecidable.
 – But we already know that \(M_P = \text{Acc}_01^{TM} \) is Turing-recognizable.
 • For a given input \(<M> \), a TM/program can simulate \(M \) on 01 and accept iff this simulation accepts.
More Applications of Rice’s Theorem
Applications of Rice’s Theorem

• Example 1: Using Rice
 – \{ < M > | M is a TM that accepts at least 37 different strings \}
 – Rice implies that this is undecidable.
 – This set = \(M_P \), where \(P = \text{“the language contains at least 37 different strings”} \)
 – \(P \) is a language property.
 – Nontrivial, since some TM-recognizable languages satisfy it and some don’t.
Applications of Rice’s Theorem

• **Example 2:** Property that isn’t a language property and is decidable
 – \{ < M > | M is a TM that has at least 37 states \}
 – Not a language property, but a property of a machine’s structure.
 – So Rice doesn’t apply.
 – Obviously decidable, since we can determine the number of states given the TM description.
Applications of Rice’s Theorem

• **Example 3:** Another property that isn’t a language property and is decidable
 – \{ < M > | M is a TM that runs for at most 37 steps on input 01 \}
 – Not a language property, not a property of a machine’s structure.
 – Rice doesn’t apply.
 – Obviously decidable, since, given the TM description, we can just simulate it for 37 steps.
Applications of Rice’s Theorem

- **Example 4:** Undecidable property for which Rice’s Theorem doesn’t work to prove undecidability
 - \(\text{Acc01SQ} = \{ <M> | M \text{ is a TM that accepts the string 01 in exactly a perfect square number of steps} \} \)
 - Not a language property, Rice doesn’t apply.
 - Can prove undecidable by showing \(\text{Acc01}_{\text{TM}} \leq_m \text{Acc01SQ} \).
 - \(\text{Acc01}_{\text{TM}} \) is the set of TMs that accept 01 in any number of steps.
 - \(\text{Acc01SQ}_{\text{TM}} \) is the set of TMs that accept 01 in a perfect square number of steps.
 - Design mapping \(f \) so that \(M \) accepts 01 iff \(f(M) = <M'> \) where \(M' \) accepts 01 in a perfect square number of steps.
 - \(f(<M>) = <M'> \) where...
Applications of Rice’s Theorem

• Example 4: Undecidable property for which Rice doesn’t work to prove undecidability
 – Acc01SQ = \{ < M > | M is a TM that accepts the string 01 in exactly a perfect square number of steps \}
 – Show Acc01_{TM} \leq_{m} Acc01SQ.
 – Design f so M accepts 01 iff f(M) = < M’ > where M’ accepts 01 in a perfect square number of steps.
 – f(<M>) = < M’ > where:
 • M’: On input x:
 – If x \neq 01, then reject.
 – If x = 01, then simulate M on 01. If M accepts 01, then accept, but just after doing enough extra steps to ensure that the total number of steps is a perfect square.
 – <M> \in Acc01_{TM} iff M’ accepts 01 in a perfect square number of steps, iff f(<M>) \in Acc01SQ.
 – So Acc01_{TM} \leq_{m} Acc01SQ, so Acc01SQ is undecidable.
Applications of Rice’s Theorem

• **Example 5:** Trivial language property

 \[
 \{ <M> | M \text{ is a TM and } L(M) \text{ is recognized by some TM having an even number of states} \}
 \]

 – This is a language property.

 – So it might seem that Rice should apply…

 – But, it’s a *trivial* language property: Every Turing-recognizable language is recognized by some TM having an even number of states.

 • Could always add an extra, unreachable state.

 – Decidable or undecidable?

 – Decidable (of course), since it’s the set of all TMs.
Applications of Rice’s Theorem

• Example 6:
 – \{ < M > | M is a TM and L(M) is recognized by some TM having at most 37 states and at most 37 tape symbols \}
 – A language property.
 – Is it nontrivial?
 – Yes, some languages satisfy it and some don’t.
 – So Rice applies, showing that it’s undecidable.
 – Note: This isn’t \{ < M > | M is a TM that has at most 37 states and at most 37 tape symbols \}
 • That’s decidable.
 – What about \{ < M > | M is a TM and L(M) is recognized by some TM having at least 37 states and at least 37 tape symbols \}?
 • Trivial---all Turing-recognizable languages are recognized by some such machine.
Next time…

• The Recursion Theorem
• Reading:
 – Sipser Section 6.1