DIVIDE & CONQUER (D&C)

- from Greek/Latin "divide & rule"
 - divide et impera
 - διαίπτε καὶ βασίλευε

Applications of D&C

- this lecture: median finding, integer multiplication, fast Fibonacci numbers
- recitation: fast matrix multiply
- lecture 3: Fast Fourier Transform
- lecture 4: Applications to data structures

MAIN IDEA

Given problem of size n:

- Divide it into subproblems of size \(\frac{n}{b} \)
- Solve each subproblem recursively (conquer)
- Combine soln’s of subproblems to get solution to the whole problem (rule)
\[T(n) = T\left(\frac{n}{b}\right) \times \text{(#subproblems)} \]
\[+ \text{(time needed to combine solutions)} \]

Usually analyzed using the Master theorem (reviewed in tomorrow’s recitation) or ad-hoc technique, usually amounting to just unraveling the above recursion.

APPLICATION 1: MEDIAN FINDING

- e.g. \(\text{median}([5, 7, -1, -8, 9, 2, 13]) = 5 \)
- Formally: given set \(S \) of \(n \) numbers, define

\[\text{rank}(x) = \text{how many elements of } S \text{ are } \leq x \]

in example above \(\text{rank}(-1) = 2 \)
upper median \(\hat{\text{A}} \) element of rank \(\left\lceil \frac{n+1}{2} \right\rceil \)
lower median \(\hat{\text{A}} \) element of rank \(\left\lfloor \frac{n+1}{2} \right\rfloor \)

if \(n \) is odd, these are the same

\underline{Algorithmic Challenge} (median finding is a special case)

\textbf{INPUT:} set \(S \) of \(n \) elements, \(i \)

\textbf{GOAL:} find element of rank \(i \)

- naive algorithm:
 - sort the elements of \(S \)
 - return \(i \)-th element

running time \(O(n \cdot \log n) \),
(\text{using e.g. mergesort or heapsort})

- challenge: can we improve this to \(O(n) \)?

- [Blum, Floyd, Pratt, Rivest, Tarjan 1973]:
 \(O(n) \), using D&C
- Idea:

1. Pick some $x \in S$ cleverly

2. Find $B = \{ y \in S \mid y < x \}$

 $T = \{ y \in S \mid y > x \}$

 $S = \leftarrow B \rightarrow X \leftarrow T \rightarrow$

 $\text{rank}(x) = |B| + 1$

3. If $\text{rank}(x) = i$, return (lucky)

 If $\text{rank}(x) > i$, find element of rank i in subset B

 If $\text{rank}(x) < i$, find element of rank $i - \text{rank}(x)$ in T

Why do we need to pick x cleverly?

E.g. execution:

- $S = \{6, 10, 13, 5, 8, 3, 2, 11\}$
- Choose $x = 2$
\[B = \emptyset \]
\[T = S \setminus \{2\} \]

- Choose \(x = 3 \)

\[B = \emptyset \]
\[T = S \setminus \{2, 3\} \]

\[\vdots \]

you get the idea:
\[n \text{ steps, each takes } O(n) \]

runtime \(O(n^2) \)

- **how to pick \(x \) cleverly?**

need to pick \(x \) so \(\text{rank}(x) \) is not extreme

\[\left\{ \begin{array}{l}
\text{take } O(n) \\
1. \text{Divide the } n \text{ elements into } \left\lfloor \frac{n}{5} \right\rfloor \\
\text{groups of 5 elements (fewer than 5 elements are left ungrouped).}
2. \text{Find the median of each group.}
\end{array} \right. \]
3. Recursively find the median \(x \) of the \(\lceil \frac{n}{5} \rceil \) group medians.

4. Find \(B = \{ y \in S \mid y < x \} \)
 \(T = \{ y \in S \mid y > x \} \)

\[S = \begin{array}{c}
B \rightarrow x \leftarrow T
\end{array} \]

\[\text{rank}(x) = |B| + 1 \]

5. If \(\text{rank}(x) = i \), return \(x \)
 If \(\text{rank}(x) > i \), find element of rank \(i \) in subset \(B \)
 If \(\text{rank}(x) < i \), find element of rank \(i - \text{rank}(x) \) in \(T \)

\[\text{Pictorially} \]

\[\text{(arrows point to larger values)} \]
Analysis:

- at least \(\left\lfloor \frac{n/5}{2} \right\rfloor = \left\lfloor \frac{n}{10} \right\rfloor \) group medians ≤ \(x \)

⇒ at least \(3 \left\lfloor \frac{n}{10} \right\rfloor \) elements ≤ \(x \)

- similarly at least \(3 \left\lfloor \frac{n}{10} \right\rfloor \) elements ≥ \(x \)

- simplification: for \(n > 50 \), \(3 \left\lfloor \frac{n}{10} \right\rfloor > \frac{n}{4} + 1 \)

⇒ guaranteed \(|B| < \frac{3}{4} n \) & \(|T| < \frac{3}{4} n \)

so 1. steps 1, 2: divide the medians of groups \(\Theta(n) \)

- step 3: recursively find medians \(T(\frac{n}{5}) \)

- step 4: find \(B, T \)

- step 5: recurse on \(B \) or \(T \)

\(T(n) = T(\frac{n}{5}) + T(\frac{3}{4} n) + \Theta(n) \)

Claim: \(T(n) ≤ c \cdot n \), for some constant \(c \).

Proof: Induction: suppose true for \(< n \)

Inductive step:

\(T(n) = T(\frac{n}{5}) + T(\frac{3}{4} n) + \Theta(n) \)

\[\leq \frac{1}{5} c n + \frac{3}{4} c \cdot n + \Theta(n) \]
\[\frac{19}{20} cn + \Theta(n) \]

\[= c \cdot n - \left(\frac{1}{20} cn - \Theta(n) \right) \]

\[\leq c \cdot n, \text{ if } c \text{ sufficiently large} \]

\[\text{to kill the constant hiding in } \Theta(c \cdot n). \]

\[(c \text{ should also be chosen sufficiently large so that } T(n) \leq c \cdot n \text{ holds for base case: } n \leq 50) \]

Why linear time? Because \(\frac{1}{5} + \frac{3}{4} < 1 \)

\[\Rightarrow \text{substantial problem reduction in every step} \]

\[\Rightarrow \text{geometric series} \]

\[\Rightarrow \text{overall runtime is of same order as first step of recursion.} \]
APPLICATION 2: INTEGER MULTIPLICATION

INPUT: two n bit numbers a, b
GOAL: compute $a \cdot b$

- grade school algorithm

\[
\begin{array}{c}
 \text{e.g.} \quad 1010 \\
 \times \quad 1101 \\
 \hline
 \text{01010} \\
 \text{00000} \\
 \text{1010} \\
 \hline
 \text{100000010}
\end{array}
\]

Running time $O(n^2)$ (as I need to add n integers of n bits)

- better algorithm?

idea 1: use divide and conquer

OK, subproblems?
view \[a = 2^{n/2} \cdot X + Y \rightarrow \text{\(n/2 \)-bit numbers} \]

\[b = 2^{n/2} \cdot Z + W \]

then \[a \cdot b = (2^{n/2}X + Y) \cdot (2^{n/2}Z + W) \]

\[= 2^n X \cdot Z + 2^{n/2} (X \cdot W + YZ) + Y \cdot W \]

products of \(n/2 \)-bit numbers

\[T(n) = 4 \cdot T(n/2) + \Theta(n) \]

\[= \Theta(n^{\log_2 4}) = \Theta(n^2) \]

(master theorem)

idea 2: Anatolii Karatsuba 1962

- same way to partition \(a, b \) in most significant and least significant part

- compute \(X \cdot Z, Y \cdot W \)

- but \underline{don't} compute \(X \cdot W, YZ \)
- instead compute
 \[(X+Y) \cdot (Z+W) = (X \cdot W + Y \cdot Z) + XZ + YW\]

- since we already have \(X \cdot Z, Y \cdot W\), we get \(X - W + Y \cdot Z\)

- now \(T(n) = 3 \cdot T(\frac{n}{2}) + \Theta(n)\)
 \[= \Theta(n \log^2 3) = \Theta(n^{1.58})\]

Is this best possible?

[Schönhage & Strassen 1971]: \(\Theta(n \log n \log \log n)\)

[Füredi 2007]: \(n \log n \cdot 2\)

APPLICATION 3: POWER OF A MATRIX

INPUT: \(n \times n\) matrix \(A\), integer \(m\)

Goal: compute \(A^m\)

Naive algorithm: compute

\[A \times A = A^2\]
\[A^2 \times A = A^3\]
\[\vdots\]
\[A^{m-1} \times A = A^m\]
Better algorithm using D&C:

top-down approach

\[
A^m = \begin{cases}
A^{m/2} \times A^{m/2}, & \text{if } m \text{ even} \\
A^{m-1} \times A^{m-1}, & \text{if } m \text{ odd}
\end{cases}
\]

so \(T(n,m) \leq T(n, \frac{m}{2}) + \Theta(n^{2.37}) \)

\[
\leq T(n, \frac{m}{4}) + 2 \cdot \Theta(n^{2.37})
\]

\[
\leq \ldots \leq T(n,2) + \Theta(n^{2.37} \log m)
\]

\[
= \Theta(n^{2.37} \log m)
\]

- so turned an \(m \) into \(\log m \)
- important if \(n \) small, \(m \) big
Application of better Algorithm: Fibonacci numbers

\[F_0 = 1, \ F_1 = 1, \ F_m = F_{m-1} + F_{m-2} \text{ for } m \geq 2 \]

0, 1, 1, 2, 3, 5, 8, 13, \ldots

\[F_{30} \text{? Bigger than 1 million} \]

\[F_m = \frac{1}{\sqrt{5}} \cdot \left(\left(\frac{1 + \sqrt{5}}{2} \right)^m - \left(\frac{1 - \sqrt{5}}{2} \right)^m \right), \text{ for all } m \]

but these are irrational so can't compute \(F_m \) w/ this formula

How compute \(F_m \)?

- Naive algorithm:

\[
F(m) = \begin{cases}
1 & \text{if } m \leq 1 \\
F(m-1) + F(m-2) & \text{else}
\end{cases}
\]

Running time: \(T(m) = T(m-1) + T(m-2) \)

same recursion as \(F_m \) => \(T(m) = 2^{O(m)} \)
- Dynamic Programming from 6.006

\[\Theta(m^2) \]

- Even Better?

\[
take \quad A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}
\]

let \[F(m) = \begin{pmatrix} F_{m+1} & F_m \\ F_m & F_{m-1} \end{pmatrix} \]

Theorem: \[F(m) = A^{m+1} \quad \text{for all } m \geq 1 \]

Proof: By induction

- **Base case:** \[F(1) = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} = A^2 \]

- Assume equality is true for \(m-1 \)

- **Inductive step:**

\[
A^m \times A = \begin{pmatrix} F_m & F_{m-1} \\ F_{m-1} & F_{m-2} \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} F_m + F_{m-1} & F_m \\ F_{m-1} + F_{m-2} & F_{m-1} \end{pmatrix}
\]
\[\begin{pmatrix} F_{m+1} \\ F_m \end{pmatrix} = \begin{pmatrix} F_m & F_{m-1} \\ F_{m-1} & F_{m-2} \end{pmatrix} \]

\[= F(m) \]

\[\Rightarrow \text{Using our fast matrix powering algorithm, computing } A^m = F(m-1) = \begin{pmatrix} F_m & F_{m-1} \\ F_{m-1} & F_{m-2} \end{pmatrix} \]

can be done in time:

\[\Theta(\log m) \cdot \text{time to multiply } \Theta(\log m) \cdot \text{bit integers} \]

\[= \Theta(\log m \cdot m^{1.58}) \text{ (with Karatsuba)} \]

\[= \Theta(\log m \cdot \log\log m \cdot m) \text{ (with Schönhage-Strassen)} \]

important not to forget that our numbers are growing