Today: Amortization
- aggregate method
- accounting method
- charging method
- potential method

} different approaches/techniques for amortized analysis - all related, but one often easier than others

- table doubling
- binary counter
- 2-3 trees

} examples of amortized analysis

Powerful technique for data structure analysis - often, what you really care about

Recall: table doubling [6.006]
- n elements in table of m slots
- want \(m = \Omega(n) \) for \(1 + \frac{m}{n} = O(1) \) expected performance (with hashing with chaining)

- idea: if \(n \) grows \(\geq m \), double \(m \)
- cost: \(\Theta(m+n) = \Theta(n) \) to build new table
\[\Rightarrow \] pay \(\Theta(2^0 + 2^1 + 2^2 + 2^3 + \ldots + 2^{\Omega(n)}) = \Theta(n) \) total to resize table over \(n \) insertions
\[\Rightarrow \Theta(1) \] amortized cost per insertion
Aggregate method: "just add it up"
- Compute total cost of \(k \) operations
- Divide by \(k \)
 \(\rightarrow \) amortized cost per operation
- Common only for simple analyses

Amortized bounds:
- Operation has amortized cost \(T(n) \) if any \(k \) operations cost \(\leq k \cdot T(n) \)
- E.g., average time, averaged over the \(k \) ops. (as in aggregate method)
- In general, free to assign amortized costs to operations so long as "preserve" total:
 \(\sum \) amortized costs \(\geq \sum \) actual costs
 Over all operations, for any operation sequence
- E.g., can say 2-3 trees achieve
 \(O(1) \) worst-case per create-empty
 \(O(\log n^*) \) amortized per insert
 \(\varnothing \) amortized per delete (assuming exists)
 Where \(n^* = \) maximum size of set at any time
 Because \(c \) creations, \(i \) insertions, \(d \leq i \) deletions
 Cost \(O(c + (i+d) \log n^*) = O(c + i \log n^* + \varnothing d) \)
 \(\leq 2i \)
- We'll tighten to \(O(\log n) \) where \(n = \) current set size, below
Accounting method: "planning ahead for rainy day"
- allow an operation to store credit (like bank)
 \[\Rightarrow \text{amortized cost} > \text{actual cost} \]
- allow operations to pay using existing credit
 \[\Rightarrow \text{amortized cost} < \text{actual cost} \]

Example: table doubling
- when inserting an element, add a coin to it representing \(c = \Theta(1) \) work
- when table needs to double \(n \rightarrow 2n \), \(n/2 \) new elements still with coins

\[\begin{array}{c}
\text{x element} \\
\text{o coin}
\end{array} \]

\[\begin{array}{cccccccc}
\times & \times \\
\end{array} \]

\[\begin{array}{cccccccc}
\times & \times \\
\end{array} \rightarrow \begin{array}{cccccccc}
\times & \times \\
\end{array} \]

\[\begin{array}{cccccccc}
\times & \times \\
\end{array} \]

\[\Rightarrow \Theta(n) - \frac{n}{2} \cdot c \text{ amortized rebuild cost} \]
\[= 0 \text{ for large enough } c \]
\[- O(1) + c = \Theta(1) \text{ amortized cost per insert} \]

Counterexample: free deletion in 2-3 trees
- claim: \(O(\log n) \) am. insert, \(O \) am. delete
- attempt: put coin worth \(\Theta(\log n) \)
on inserted element
- trouble: when deleting that element, \(n \) might be bigger \(\Rightarrow \) coin worth too little
Charging method: (blaming the past — not in CLRS)
- allow operations to charge cost retroactively to past operations (not future ops)
- amortized cost of op. = actual cost
 - total charge to past ops.
 + total charge by future ops. to this op.

Example: table doubling
- when table doubles \(n \to 2n \), charge \(\Theta(n) \)
 cost to \(n/2 \) inserts since last doubling
 \(\Rightarrow \) each of these elements charged \(\frac{\Theta(n)}{n/2} = \Theta(1) \)
 \(\Rightarrow \) won’t be charged again
 \(\Rightarrow \Theta(1) \) amortized per insert

Example: table doubling & halving
- motivation: want \(\Theta(n) \) space even with deletes
- if table down to \(1/4 \) full \((n = m/4) \):
 shrink to half size \((m \to m/2) \) at \(\Theta(m) \) cost
 \(\Rightarrow \) still half full after any resize
 \(\Rightarrow \) still \(\geq m/2 \) inserts to charge to on growth
 - also \(\geq m/4 \) deletes to charge to on shrink
 - each operation charged \(\leq \) once, by \(\Theta(1) \)
 \(\Rightarrow \Theta(1) \) amortized per insert & delete

- could do this argument with coins instead, but less intuitive (to me)
Example: free deletion in 2-3 trees
- claim: $O(\log n)$ am. insert, \emptyset am. delete
- insert charges nothing
- delete charges one insert:
 - not the insertion of same element
 (same problem as accounting method)
 - insertion that brought n
 to its current value
 - before n can reach this value again,
 must have another insert
 \Rightarrow each insert charged at most once
Potential method: (defining karma)
- define a potential function Φ mapping data-structure configuration \rightarrow nonnegative integer
 - intuitively measuring “potential energy”
 = potential high costs in the future
 = equivalent to total unused credit
 \leq unused coins) stored by all past ops.
 = bank account balance
 - nonnegative \Rightarrow never owe the bank
- amortized cost $= \text{actual cost} + \Delta \Phi$
 = $\Phi(\text{DS after op.}) - \Phi(\text{DS before op.})$

\Rightarrow sum of amortized costs telescopes
= sum of actual costs + $\Phi(\text{final DS}) - \Phi(\text{initial DS})$
 $\geq \Phi$ {initial balance}

- so also need to pay $\Phi(\text{initial DS})$ at start
 ideally \neq or $O(1)$ \Rightarrow else another amortization

- in accounting method, specify offset ($\Delta \Phi$)
 between actual cost $\&$ amortized cost,
 which determines total stored value (Φ)
- in potential method, specify total stored value Φ,
 which determines changes per op.: $\Delta \Phi$
- sometimes one is more intuitive than other
- potential method feels most powerful (to me)
 but also the hardest to come up with proof (Φ)
Example: binary counter
- operation: increment
- increment costs \(\Theta(1 + \# \text{trailing 1 bits}) \)
 so intuition is that 1 bits are bad
- define \(\Phi = c \cdot \# \text{1 bits in counter} \)
 \(\Rightarrow \Delta \Phi \) from increment
 \(= -c (\# \text{trailing 1 bits} - 1) \)
 \(\Rightarrow \text{amortized cost} = \text{actual cost} + \Delta \Phi \)
 \(= \Theta(1 + \# \text{trailing 1 bits}) - c (\# \text{trailing 1 bits} - 1) \)
 \(= O(1) \) for \(c \) large enough
- \(\Phi(\text{initial DS}) = \emptyset \) assuming we start \(@000...0 \)
 (necessary for \(O(1) \) amortized bound)

Example: insert in 2-3 trees
- \(O(\lg n) \) splits in worst case
- but claim only \(O(1) \) amortized splits
- what causes splits? nodes overflowing
- \(\Phi = \# \text{nodes with 3 children} \)
 \(\Rightarrow \Delta \Phi \leq 1 - \# \text{splits} \)
 add child @ top \(\Rightarrow \) each split turns 3 \(\rightarrow \) 2 2
 \(\Rightarrow \text{amortized} \# \text{splits} = \text{actual} \# \text{splits} + \Delta \Phi \)
 \(\leq \# \text{splits} + (1 - \# \text{splits}) = 1 \)
- \(\Phi(\text{initial DS}) = \emptyset \) if we start empty

In B-trees: \(\Phi = \# \text{nodes with B children} \)
In (a,b)-trees: \(\Phi = \# \text{nodes with 6 children} \)
Example: insert & delete in (2,5)-trees
- claim \(O(1) \) amortized splits & merges
- overflows cause splits \(\rightarrow \) 5-nodes
- underflows cause merges \(\rightarrow \) 2-nodes
- \(\Phi = \# \text{ 5-nodes} + \# \text{ 2-nodes} \)
- insert: \(\Delta \Phi \leq 1 - \# \text{ splits} \)
 - make a 5-node from final merge
 - destroy 5-nodes (\& no new)
- delete: \(\Delta \Phi \leq 1 - \# \text{ merges} \)
 - make a 2-node from final steal
 - destroy 2-nodes (\& no new 3-nodes)

OVERFULL:

```
<table>
<thead>
<tr>
<th>5 keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 children</td>
</tr>
</tbody>
</table>
```
\(\Rightarrow \)

```
<table>
<thead>
<tr>
<th>5 k</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-node</td>
</tr>
</tbody>
</table>
```
\(\Rightarrow \)

```
<table>
<thead>
<tr>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-node</td>
</tr>
</tbody>
</table>
```

<table>
<thead>
<tr>
<th>ys</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-node</td>
</tr>
</tbody>
</table>

UNDERFULL:

```
<table>
<thead>
<tr>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 child</td>
</tr>
</tbody>
</table>
```
\(\Rightarrow \)

```
<table>
<thead>
<tr>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-node</td>
</tr>
</tbody>
</table>
```
\(\Rightarrow \)

```
<table>
<thead>
<tr>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-node</td>
</tr>
</tbody>
</table>
```

\(\Rightarrow \) amortized costs = \(O(1) \)
- \(\Phi(\text{initial DS}) = \emptyset \) if we start empty

In (a,b)-trees: need \(b > 2a \)

Potential examples could also be done with accounting method: coins on 1s or \(\frac{a}{5} \)-nodes.