Today: Augmentation
- easy tree augmentation
- order-statistic trees
- finger search trees
- range trees

Idea: modify "off-the-shelf" data structure to store additional information → updates

Easy tree augmentation:
- goal: store \(f(\text{subtree rooted at } x) \) at each node \(x \) in \(x.f \)
- suppose \(x.f \) can be computed in \(O(1) \) time from \(x, \text{children, & children}.f \)
- if modify set \(S \) of nodes (data, children) then costs \(O(\#\text{ancestors of nodes in } S) \) to update \(f(x) \)'s (walk up from \(S \))
- so \(O(\log n) \) updates in
- AVL trees: e.g. rotate
 -> update \(y \) then \(x \)
- 2-3 trees: e.g. split
 -> update \(x \) & \(z \)
(→ also update up the tree)
Order-statistic trees: (from 6.006) (Abstract Data Type)
- **ADT/interface:**
 - \(\text{insert}(x) / \text{delete}(x) / \text{successor}(x) \)
 - \(\text{rank}(x) \): find \(x \)'s index in sorted order (= \# elements < \(x \) if all distinct)
 - \(\text{select}(i) \): find element of rank \(i \)

- **Idea:** use easy tree augmentation to store subtree size: \(f(\text{subtree}) = \# \text{nodes in it} \)
- Say, AVL trees \(\Rightarrow \) binary (2-3 trees also work)
- \(\text{rank}(x) \):
 - \(\text{rank} = x.\text{left}.\text{size} + 1 \)*
 - walk up to root from \(x \)
 - when go left (\(x \rightarrow x' \)):
 \(\text{rank} += x'.\text{left}.\text{size} + 1 \)
- \(\text{select}(i) \):
 - \(x = \text{root} \)
 - \(\text{rank} = x.\text{left}.\text{size} + 1 \)*
 - if \(i = \text{rank} \): return \(x \)
 - if \(i < \text{rank} \): \(x = x.\text{left} \)
 - if \(i > \text{rank} \): \(x = x.\text{right} \)
 \(i -= \text{rank} \)
 - repeat

- e.g., can't maintain rank of each node: \(\text{insert}(-\infty) \) would change all ranks
Finger search trees: [Brown & Tarjan 1980]
- goal: if already found y, search(x from y) should only take \(O(\lg |\text{rank}(x) - \text{rank}(y)|)\)
- idea: level-linked 2-3 trees
 - each node points to next & previous on same level
- maintain during split/merge:

- also maintain min & max of each subtree (via easy tree augmentation)
- search(x from y):
 - if y is in a leaf: \(v = y\)'s node
 - else: \(v = y\)'s previous child, max
 - if \(v\.min\.key \leq x \leq v\.max\.key\):
 search within v's subtree (as in regular 2-3 tree search)
 - if \(x < v\.key\): \(v = v\.level\.left\)
 - else if \(x > v\.key\): \(v = v\.level\.right\)
 - \(v = v\.parent\)
 - repeat
Analysis:
- start at leaf level (height \emptyset)
- each round, go up 1 level
 \Rightarrow at step i, level link (height i) skips $\approx c_i$ nodes where $c \in [2,3]$
 \Rightarrow if $|\text{rank}(x) - \text{rank}(y.\text{key})| = k$
 then reach x in $O(lg k)$ steps
 (and downward search also $O(lg k)$)
Orthogonal range searching: preprocess n points in d dimensions into a (static) data structure supporting range query: find k points in given axis-aligned box (rectangle in 2D)

OR count # points

2D:

3D:

1D: query = interval

- sorted array: binary search, walk right
 $\Rightarrow O(lg n + k)$ to report k
 (count in $O(lg n)$ via 2 binary searches + subtract)

- finger search tree: (dynamic)
 search, finger search right by 1, ...
 $\Rightarrow O(lg n + k)$ also
 (counting harder...)
1D range tree:
- complete BST (static ~ for dynamic, use AVL)
- range-query([a, b]):
 - search(a)
 - search(b)
 - trim common prefix
 - return $O(\log n)$ nodes & subtrees "in between"
- $O(\log n)$ to implicitly represent answer
- $O(\log n + k)$ to traverse k outputs
- $O(\log n)$ count via subtree size augmentation
2D range tree:
- primary 1D range tree
 keyed on \(x \) coordinate
 storing all points

- every node \(v \) in primary \(x \)-tree stores secondary 1D range tree,
 keyed on \(y \) coordinate, storing all points in \(v \)'s subtree

- range-search:
 - use primary \(x \)-tree to find points
 in correct \(x \) range (implicitly)
 - \(O(lg n) \) points: check manually
 - \(O(lg n) \) subtrees: for each \(v \),
 use \(v \)'s secondary \(y \)-tree
 to find points in correct \(y \) range
 (implicitly)
 \(\Rightarrow \) implicit representation as \(O(lg^2 n) \)
 nodes & subtrees of secondary trees)

 \(\Rightarrow \) \(O(lg^2 n + k) \) to report \(k \) answers
 - \(O(lg^2 n) \) to count via subtree size
Space: \(O(n \log n)\)
- \(O(n)\) for primary tree
- each point appears in \(O(\log n)\) secondary trees (one per ancestor)

OR: each level of primary tree stores all points in secondary trees

\(d\)-\(D\) range trees:
- recurse from primary \(\rightarrow\) secondary \(\rightarrow\)...

- query: \(O(\log^d n + k)\)
- space: \(O(n \log^{d-1} n)\)

Chazelle's improvement:
- \(O(\log^{d-1} n + k)\)
- \(O(n \left(\frac{\log n}{\log \log n}\right)^{d-1})\)
(see 6.851)