Today: Greedy algorithms & Minimum Spanning Tree (MST)
- MST problem
- optimal substructure
- greedy-choice property
- Prim’s algorithm
- Kruskal’s algorithm

Recall: [Lecture 1]

Greedy algorithm: repeatedly make locally best choice/decision, ignoring effect on future
- saw greedy algorithm for scheduling problem
- Dijkstra’s algorithm also ≈ greedy
 (cf. Bellman-Ford: incremental improvement)
- today: greedy algorithm for graph problem

Tree = connected graph with no cycles
Spanning tree of graph = subset of graph’s edges that form a tree spanning (containing) all vertices
Minimum spanning tree (MST) problem:
given a graph $G = (V, E)$ & edge weights $w : E \to \mathbb{R}$,
find spanning tree $T \subseteq E$ of minimum weight:
$$w(T) = \min_{T \subseteq E} w(T)$$

Example:

Naïve algorithm: check all spanning trees
- exponential time

Greedy properties: problems amenable to greedy algorithms usually satisfy:

1. optimal substructure: optimal solution to problem contains optimal solution(s) to subproblem(s)
 - also common for dynamic programming

2. greedy-choice property: locally optimal choices lead to globally optimal solution
Optimal substructure for MST:
if \(e = (u,v) \) is an edge of some MST of \(G = (V,E,w) \):
- **contract** edge \(e \): merge vertices \(u \) & \(v \).
- if we get multiple copies of an edge, just keep lowest weight:

\[
G \quad \xrightarrow{\text{contract}} \quad G/e
\]

- if \(T' \) is an MST of \(G' = G/e \),
then \(T = T' \cup e \) is an MST of \(G \).
remap edges to decontract \(e \):

\[
G \quad \xrightarrow{\text{contract}} \quad G/e \quad \xrightarrow{\text{decontract}} \quad G
\]

Proof:
- let \(T^* \) be an MST of \(G \) containing edge \(e \)
 \(\Rightarrow T^*/e \) is a spanning tree of \(G' \).
- \(T' \) is an MST of \(G' \)
 \(\Rightarrow w(T') \leq w(T^*/e) \)
 \(\Rightarrow w(T) = w(T') + w(e) \leq w(T^*/e) + w(e) = w(T^*). \blacksquare \)
Dynamic program attempt:
- guess an edge to put in MST
- contract to get new subproblem
- recurse
- decontract & add e

but # subproblems is exponential :(
Greedy-choice property for MST:

For any cut \((S, V \setminus S)\) in graph \(G = (V, E, w)\), any least-weight crossing edge \(e = \{u, v\}^3\) with \(u \in S \& v \notin S\) is in some MST of \(G\).

Proof: cut & paste argument
- Consider an MST \(T\) of \(G\).
- \(T\) has a path from \(u\) to \(v\).
- \(u \in S \& v \notin S\), so the path has some edge \(e' = \{u', v'\}\) with \(u' \in S \& v' \notin S\).
- Then \(T' = T \setminus \{e'\} \cup \{e\}\) is a spanning tree of \(G\) & \(w(T') = w(T) - w(e') + w(e)\).
- But \(e\) is a least-weight edge crossing \((S, V \setminus S)\).

\[w(e) \leq w(e') \]
\[w(T') \leq w(T) \]
\[\Rightarrow T' \text{ is a MST too.} \]
Prim's algorithm: start with $|S|=1$ & grow from there
- maintain priority queue Q on $V \setminus S$,
 where v.key = min \{w(u,v) | u \in S\}$
- initially Q stores V ($S=\emptyset$)
- s.key = \emptyset (for arbitrary start vertex $s \in V$)
- for $v \in V \setminus \{s\}$: v.key = ∞
- until Q empty:
 - $u = \text{Extract-Min}(Q)$ (add u to S)
 - for $v \in \text{Adjacent}[u]$:
 - if $v \in Q (v \notin S) \& w(u,v) < v$.key:
 - v.key = $w(u,v)$ $\leftarrow \text{Decrease-Key}$
 - v.parent = u
 - return $\{ v \setminus v$.parent $\mid v \in V \setminus \{s\} \}$

Correctness:
- invariant: $v \notin S \Rightarrow v$.key = min \{w(u,v) | u \in S\}
- invariant: tree T_S within $S \subseteq$ MST of G
 - if $c = \min \{a, b, c\} \leq \min \{a, b, c\} \& d$
 then by greedy-choice property, e is in an MST
... even when S is contracted to one vertex
- find MST containing e in G/T_S
 & then decontract T_S via optimal substructure
$\Rightarrow T_S \cup \exists e \subseteq$ an MST of G (by ind.) \square
Example:
\[\text{Time: } \Theta(V) \cdot T_{\text{Extract-Min}} + \Theta(E) \cdot T_{\text{Decrease-Key}} \]

\[\frac{1}{2} |\text{Adj}(v)| = \frac{1}{2} \deg(v) = 2 \cdot E \] (Handshaking Lemma)

<table>
<thead>
<tr>
<th>data structure</th>
<th>(T_{\text{Extract-Min}})</th>
<th>(T_{\text{Decr.-Key}})</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>array (nothing)</td>
<td>(O(V))</td>
<td>(O(1))</td>
<td>(O(V^2))</td>
</tr>
<tr>
<td>binary heap</td>
<td>(O(lg V))</td>
<td>(O(lg V))</td>
<td>(O(E + V lg V))</td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>(O(lg V))</td>
<td>(O(1))</td>
<td>(O(E + V lg V))</td>
</tr>
</tbody>
</table>

(CLRS ch. 19)
Kruskal’s algorithm: take globally lowest-weight edge & contract
- maintain connected components in MST-so-for T in Union-Find structure [Recitation 3]
- \(T = \emptyset \)
- for \(v \in V \): Make-Set(\(v \)) \(\leftarrow \) initially, 1 vertex/comp.
- sort \(E \) by \(w \)
- for \(e = (u, v) \in E \) (in increasing weight order):
 - if Find-Set(u) \(\neq \) Find-Set(v):
 - add \(e \) to MST
 - Union(u,v)

Correctness: imagine components as contracted + greedy-choice + optimal substructure

Time:
\[
\text{Time} = \underbrace{T_{\text{sort}}(V)}_{O(n \log n)} + O(V) \cdot T_{\text{make-set}} + O(E) \cdot (T_{\text{find}} + T_{\text{union}}) \]
\[
O(\alpha(V)) \text{ am. tiny}
\]
\[
O(n) \text{ e.g. if weights are integers } \in [O, n^0(1)] \quad \text{then can beat Prim}
\]

Best MST algorithm: \[O(V+E)\] expected time (randomized) [Karger, Klein, Tarjan 1993]