Reductions & Approximation

\[\rightarrow \text{Informal Refresher: } \text{NP-completeness} \]
\[\rightarrow \text{Reductions: } \text{cSAT} \rightarrow \text{SAT} \rightarrow \text{3SAT} \rightarrow \text{Vertex Cover} \]
\[\rightarrow \text{Approximation Algorithms} \]

NP-Completeness

- NP: contains all decision problems ("yes"/"no" answers) whose "yes" inputs have poly-short & poly-time verifiable certificates

 e.g.
 - Is there a 2-d matching in a graph?
 - Is there a 3-d matching in a graph?
 - Is there a path from s to t of length \(\leq K \)?
 etc.

- Reductions: We say that \(\Pi_1 \leq_p \Pi_2 \) if there is a polynomial-time algorithm \(R \) s.t.
 - if \(x \) is an input to \(\Pi_1 \), \(R(x) \) is an input to \(\Pi_2 \)
 - \(\Pi_1(x) = \text{"yes"} \iff \Pi_2(R(x)) = \text{"yes"} \)

In words, "\(\Pi_2 \) is at least as hard as \(\Pi_1 \)."
- **NP-complete**: "the hardest problems in NP"

 Formally, \(\mathcal{T} \) is NP-complete iff

 i. \(\mathcal{T} \in \text{NP} \)

 ii. \(\forall \mathcal{T}' \in \text{NP}: \mathcal{T}' \leq_p \mathcal{T} \)

 if only ii, then NP-hard

- **Cook's Theorem [1971]**: circuit-SAT is NP-complete.

 given Boolean circuit with gates AND, OR, NOT and no feedback, is there a way to set input wires to 0/1 values so that output wire is 1.

- **Karp [1972]**: showed that many other problems are NP-complete by reducing circuit-SAT to them.

- **SAT**: given formula \(\varphi \) in conjunctive-normal-form (AND of ORs) is it satisfiable?

 \[\varphi = (x_1 \lor \overline{x}_2) \land x_3 \land (\overline{x}_3 \lor x_1 \lor x_2) \]

 is satisfiable by setting

 \(x_1 = 1, x_2 = 0/1, x_3 = 1 \)

 \[\varphi = (x_1 \lor \overline{x}_2) \land (x_2 \lor \overline{x}_3) \land x_3 \land \overline{x}_1 \]

 is not satisfiable

- clearly in NP & Karp showed circuit-SAT \(\leq_p \) SAT
- hence SAT is NP-complete
A bit of terminology (by example):

In CNF formula \(\phi = (x_1 \lor \overline{x_2}) \land x_3 \land (\overline{x_3} \lor x_1 \lor x_2) \)

- conjunctive normal form
- variables: \(x_1, x_2, x_3 \)
- literals: \(x_1, x_2, x_3, \overline{x_2}, \overline{x_3} \)
- clauses: \(x_1 \lor \overline{x_2}, x_3, \overline{x_3} \lor x_1 \lor x_2 \)

3-SAT: given formula \(\phi \) in CNF form w/ 3 literals per clause, is \(\phi \) satisfiable?

E.g., \(\phi = (x_1 \lor \overline{x_2}) \land x_3 \land (\overline{x_3} \lor x_1 \lor x_2) \) is not a valid input to 3-SAT,

but \(\phi' = (x_1 \lor \overline{x_2} \lor x_3) \land (x_2 \lor x_3 \lor x_4) \) is

- clearly 3-SAT \(\in \) NP
- easy to see: 3-SAT \(\leq_p \) SAT (but we already knew it, since SAT is NP-complete)
- Karp: SAT \(\leq_p \) 3-SAT \(\Rightarrow \) 3-SAT is NP-complete as well

So far: circuit-SAT \(\leq_p \) SAT \(\leq_p \) 3-SAT

- all these are circuit/formula satisfiability problems
- how about graph problems?
3-SAT ≤p VERTEX COVER:

- **Vertex Cover (VC):** Given graph \(G = (V, E) \) and an integer \(k \), does there exist a subset \(S \subseteq V \) s.t. \(|S| \leq k \) and every \(e \in E \) is incident to at least one vertex in \(S \)?

- Clearly, \(VC \in NP \): indeed if \((G, k) \) is a "yes" instance then a poly-short certificate for this is a subset \(S \) of \(\leq k \) vertices which in poly-time can be checked to be incident to all edges.

- **Reduction from 3-SAT to VC:**
 - Input to reduction: \(CNF \) formula \(\phi \)
 - \(n = \# \) variables
 - \(m = \# \) clauses
 - Goal of reduction: encode \(\phi \) via a graph \(G = (V, E) \) \& number \(k \) s.t. \((\phi \text{ satisfiable}) \iff (\exists \text{ vertex cover of size } k)\)
 - Technique: gadget construction
 - for each variable \(a \) a gadget (i.e. a subgraph of \(G \)) representing its truth value
ii. for each clause a gadget representing the fact that at least one literal must be true

iii. edges connecting these kinds of gadgets

- Construction:

- each variable \(x_i \) \(\rightarrow \) \(P_{x_i} \rightarrow N_{x_i} \)

 note: choosing one vertex is necessary and sufficient to cover the edge (*)

- every clause \(C \) \(\rightarrow \)

 \(S_c \rightarrow f_c \rightarrow t_c \rightarrow S_c \)

 note: choosing two vertices is necessary and sufficient to cover these three edges (**)

 e.g. \(\psi = (x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \)

\[\begin{align*}
P_{x_1} & \rightarrow N_{x_1} \\
P_{x_2} & \rightarrow N_{x_2} \\
P_{x_3} & \rightarrow N_{x_3} \\
f_{c_1} & \rightarrow S_{c_1} \rightarrow t_{c_1} \\
f_{c_2} & \rightarrow S_{c_2} \rightarrow t_{c_2} \\
f_{c_3} & \rightarrow S_{c_3} \rightarrow t_{c_3}
\end{align*} \]
without any further edges, we know that the smallest vertex cover in our graph has size $k = n + 2m$ (this follows from observations (C) and (D)).

trick: this is true regardless of whether φ is satisfiable.

we need to encode the relations of clauses to variables.

connections between variable and clause gadgets:

- let’s go back to our example:

$\varphi = (x_1 \lor x_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3)

- formally: if first literal of clause c_i is x_j add edge (f_{c_i}, p_{x_j})
if first literal of \(c_i \) is \(\overline{x}_j \) add edge \((f_{c_i}, n_{c_j})\)

similarly for nodes \(s_{c_i} \) and \(t_{c_i} \)

- end of construction

- Correctness:

claim: \(\exists \) vertex-cover of size \(k = 2m + n \) \(\Rightarrow \varphi \) is satisfiable

proof:

- Say exists VC of size \(k \). It must use exactly one vertex from each variable gadget and exactly two vertices from each clause gadget.
 - If \(p_{x_i} \) is in VC, set \(x_i = 1 \); o.w. set \(x_i = 0 \)
 - Want to show that resulting assignment \(x_1, \ldots, x_n \) satisfies every clause.
 - Pick any clause \(c \) of \(\varphi \), e.g. \(x_1 \lor x_2 \lor \overline{x}_3 \)

 subclaim: If none of \(n_{x_1}, p_{x_2}, n_{x_3} \) is in VC, then at least one edge adjacent to \(\) clause gadget is uncovered.
pf: Suppose not.
* Exactly two of f_c, s_c, t_c are in VC (by ***).
* Then the blue edge adjacent to the vertex that isn't in VC will be uncovered. \Box

claim \Rightarrow at least one of $n_{x_1}, p_{x_2}, n_{x_3}$ is in VC \Rightarrow assignment satisfies clause \Box.

claim 2: If φ is satisfiable $\Rightarrow \exists$ VC of size k.

Proof: easy - say x is satisfying assignment

- If $x_i = 1$, then include p_{x_i} in VC; now n_{x_i}
- Pick another 2-m vertices from clause gadgets to cover all edges. \Box

- We have completed our proof of 3-SAT \leq_p VC.

$\Rightarrow VC$ is NP-complete.

* so far: circuit-SAT \leq_p SAT \leq_p 3-SAT \leq_p VC \leq_p Ham-Cycle

\rightarrow recitation

so all of these problems NP-complete
we know thousands more e.g. TSP, 3d-matching, knapsack, independent-set, longest path, max-clique, 0-1 programming, ...

moral of the story: many interesting problems are hard

Beyond NP-Completeness

- average case analysis: input may not be worst-case
- special inputs: e.g. tree/bounded treewidth/planar graphs may be easier
- change the problem
- approximation algorithms

Approximation Algorithms

- meaningful for optimization versions of problems
- goal: in polynomial-time find solution whose value is within a constant factor of optimal
- for $\alpha > 1$, an α-approximation algorithm outputs a solution whose value is guaranteed to be

\[\frac{\text{opt}}{\alpha} \]

for maximization problems

\[\alpha \cdot \text{opt} \]

for minimization problems
- E.g. a 2-approximation algorithm for TSP always outputs a cycle whose weight is at most a factor of 2 larger than optimal.

Today: 2-approximation for Max-cut

Max-cut: Given graph $G = (V, E)$ partition V into two non-empty sets S and $V-S$ so as to maximize the number of edges going from S to $V-S$.

E.g.

Max-cut has size 4

Min-cut: Same but want to minimize cut edges.

While min-cut is in P, max-cut is NP-complete (decision version).
Q: Can we approximate max-cut (optimization version)?
A: Yes, almost trivially.

- Proposed Algorithm:
 For every vertex \(v \), include it in \(S \) with probability \(1/2 \) independently of other vertices.

Analysis:

\[
\mathbb{E} [\# \text{cut edges}] = \sum_{\text{edges } e=(u,v)} \Pr[\text{exactly one of } u,v \text{ is in } S]
\]

\[
= \sum_e \frac{1}{2} = \frac{|E|}{2}
\]

\(\text{OPT} \leq |E| \)

\(\Rightarrow \mathbb{E} [\# \text{cut edges}] \geq \frac{|E|}{2} \)

hence our algorithm is a 2-approximation

- Derandomization?
 - Start w/ arbitrary cut;
 - While \(\exists \) vertex that can be moved to other side of cut to improve size of cut, move it;
 - Return cut.
Analysis:

- \#iterations \leq |E| as the size of the cut increases by one in each iteration
- Checking if \exists \text{ vertex to be moved} takes \(O(|E|) \) (as constant work/edge)
 \(\Rightarrow O(|E|^2) \) time overall

Approximation Guarantee:

at termination:

\[\forall u \in S: \#\text{edges } (u, v) \geq \#\text{edges } (u, v) \forall v \in S \]

\[\forall u \notin S: \#\text{edges } (u, v) \geq \#\text{edges } (u, v) \forall v \in S \]

\(\Rightarrow \) at least half of the edges incident to every vertex are cut

\(\Rightarrow \) size of cut \(\geq \frac{|E|}{2} \)

Best Known Poly-time Algorithm:

[Goemans-Williamson '91]: \(\alpha = 1.139 \)