Today: Fixed-parameter algorithms
- vertex cover
- fixed-parameter tractability
- kernelization
- connection to approximation

How fast can exact algorithms be? [Downey & Fellows 1997]

Idea: isolate exponential term to parameter
⇒ get fast solution for instances with small parameter value

Parameter = function: instance → \(\mathbb{N} \)
- often a “natural” parameter (\(k \) in input)
- not necessarily efficiently computable
- e.g. OPT

Parameterized problem = problem + parameter
“problem w.r.t. parameter”
(potentially many interesting parameterizations)
Example: k-Vertex Cover (NP-hard)
Given: graph $G = (V, E)$, $k \in \mathbb{N}$
Q: is there a set S of $\leq k$ vertices
that "covers" all edges: $\forall e \in E \exists v \in S$ ne
Parameter: k

Note: can have $k \ll n$:

Trivial solution: (BAD)
- try all $\binom{n}{k} + \binom{n}{k-1} + \cdots + \binom{n}{0}$ sets of $\leq k$ vxs.
 can skip - bigger is better
- test coverage in $O(m)$ time
 $\Rightarrow O(n^k m)$ time
 - polynomial for fixed k
 - but not same polynomial - eg. not $O(n^{100})$
 - inefficient in most cases
 \Rightarrow define $n^{f(k)}$ to be BAD
Bounded search-tree algorithm: \textit{(Good)}

- pick arbitrary edge \(e = (u, v) \)
- know that either \(u \in S \) or \(v \in S \) (or both)
- but don't know which
- guess: try both possibilities
 \begin{enumerate}
 \item add \(u \) to \(S \)
 - delete \(u \) & incident edges from \(G \)
 - recurse with \(k' = k - 1 \)
 \item ditto with \(v \) instead of \(u \)
 \end{enumerate}
- return OR of two outcomes
- like guessing in dynamic programming, but memoization doesn't help here

recursion tree:

- at leaf \((k = 0)\):
 - return \(|E| = 0\)
- \(O(V)\) time to delete \(u \) or \(v \)
- \(O(2^k \cdot V)\) time
 - \(O(V)\) for fixed \(k \)
 - degree of polynomial independent of \(k \)
 - also polynomial for \(k = O(\log V) \)
 - practical for e.g. \(k \leq 32 \)
- define \(f(k) \cdot n^{O(1)} \) to be \textit{Good}
FPT: A parameterized problem is fixed-parameter tractable (FPT) if there is an algorithm with running time \(f(k)n^{O(1)} \) where \(f: \mathbb{N} \to \mathbb{N} \) is a parameter (nonnegative) independent of \(k \) and \(n \).

Question: why \(f(k) \cdot n^{O(1)} \) not \(f(k) + n^{O(1)} \)?

Theorem: \(\exists f(k) \cdot n^c \) algorithm \(\iff \exists f'(k) + n^{c'} \) algorithm

Proof:

\((\Leftarrow) \) trivial (assuming \(f'(k) \) & \(n^{c'} \geq 1 \))

\((\Rightarrow) \)

if \(n \leq f(k) \) then \(f(k) \cdot n^c \leq f(k)^{c+1} \)

if \(f(k) \leq n \) then \(f(k) \cdot n^c \leq n^{c+1} \)

so \(f(k) \cdot n^c \leq \max \{ f(k)^{c+1}, n^{c+1} \} \)

\(\leq f(k)^{c+1} + n^{c+1} \)

\[\frac{f'(k)}{c} \]

Example: \(O(2^k \cdot n) \Rightarrow O(4^k + n^2) \)
Kernelization: a simplifying self-reduction polynomial-time algorithm converting input \((x, k)\) into small equivalent input \((x', k')\)

\[|x'| \leq f(k) \iff \text{answer}(x) = \text{answer}(x')\]

Theorem: FPT \iff \exists kernelization

Proof: \((\Leftarrow)\) kernelize \(\Rightarrow n' \leq f(k)\)

run any finite \(g(n')\) algorithm

\[\Rightarrow n^{O(1)} + g(f(k))\] time

\((\Rightarrow)\) let \(A\) be an \(f(k) \cdot n^c\) algorithm

if \(n \leq f(k)\) then already kernelized

if \(f(k) \leq n:\)

- run \(A \Rightarrow f(k) \cdot n^c \leq n^{c+1}\) time \(\checkmark\)
- output \(O(1)\)-size YES/NO instance as appropriate (to kernelize)

assuming \(k\) is known

if \(k\) is unknown: run \(A\) for \(n^{c+1}\) time

& if not done, know already kernelized \(\square\)

So (exponential) kernel exists. Recent work aims to find polynomial (even linear) kernels when possible.
Polynomial kernel for k-vertex cover:
- make graph simple:
 - remove loops & multi-edges
- any vertex of degree \(\geq k \) must be in cover (else need \(\geq k \) vertices to cover inc. edges)
- remove such vertices (& incident edges) one at a time, decreasing \(k \) accordingly
 \(\Rightarrow \) remaining graph has max. degree \(\leq k \)
 \(\Rightarrow \) each remaining cover vertex covers \(\leq k \) edges
 \(\Rightarrow \) if \# remaining edges > \(k^2 \), answer is No:
 output canonical No instance
 - else \(|E'| \leq k^2 \)
- remove isolated vertices
 \(\Rightarrow |V'| \leq 2k^2 \)
 \(\Rightarrow \) reduced to instance \((V', E')\) of size \(O(k^3) \)
 in \(O(V+E) \) time \(\text{quadratic kernel} \)

- if we now apply:
 - trivial solution \(\Rightarrow O(V+E+(2k^2)^k k^2) = O(V+E+2^k k^{2k+2}) \) time
 - bounded solution \(\Rightarrow O(V+E+2^k k^2) \) time

Best algorithm to date: \(O(kV+1.274^k) \)
[Chen, Kanj, Xia - MFCS 2006]
Connection to approximation algorithms:
- take optimization problem, integral OPT
- consider associated decision problem: \(\text{OPT} \leq k? \)
- parameterize by \(k \)

Theorem: optimization problem has **EPTAS**

\[\text{[L20]} \text{ efficient PTAS: } f(1/3) \cdot n^{O(1)} \]

\(\Rightarrow \) decision problem is FPT

Proof: (like PTAS \(\Leftrightarrow \) pseudo-poly. alg.)
- say maximization problem (& \(\leq k \) decision)
- run EPTAS with \(\varepsilon = \frac{1}{2k} \) in \(f(2k) \cdot n^{O(1)} \)
- relative error \(\leq \frac{1}{2k} < \frac{1}{k} \)
 \(\Rightarrow \) absolute error \(< 1 \) if \(\text{OPT} \leq k \)
- so if we find solution with value \(\leq k \)
 then \(\text{OPT} \leq (1 + \frac{1}{2k}) \cdot k \leq k + \frac{1}{2} \)
 integral \(\Rightarrow \text{OPT} \leq k \Rightarrow \text{YES.} \)
- else \(\text{OPT} > k \)

Also: \(= \), \(\leq \), \(\geq \) decision problems are equivalent w.r.t. FPT

\(--\) Can use this relation to prove EPTASs don't exist in some cases